A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Olfactory bulb tracks breathing rhythms and place in freely behaving mice. | LitMetric

Vertebrates sniff to control the odor samples that enter their nose. These samples can not only help identify odorous objects, but also locations and events. However, there is no receptor for place or time. Therefore, to take full advantage of olfactory information, an animal's brain must contextualize odor-driven activity with information about when, where, and how they sniffed. To better understand contextual information in the olfactory system, we captured the breathing and movements of mice while recording from their olfactory bulb. In stimulus- and task-free experiments, mice structure their breathing into persistent rhythmic states which are synchronous with statelike structure in ongoing neuronal population activity. These population states reflect a strong dependence of individual neuron activity on variation in sniff frequency, which we display using "sniff fields" and quantify using generalized linear models. In addition, many olfactory bulb neurons have "place fields" that display significant dependence of firing on allocentric location, which were comparable with hippocampal neurons recorded under the same conditions. At the population level, a mouse's location can be decoded from olfactory bulb with similar accuracy to hippocampus. Olfactory bulb place sensitivity cannot be explained by breathing rhythms or scent marks. Taken together, we show that the mouse olfactory bulb tracks breathing rhythms and self-location, which may help unite internal models of self and environment with olfactory information as soon as that information enters the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581006PMC
http://dx.doi.org/10.1101/2024.11.06.622362DOI Listing

Publication Analysis

Top Keywords

olfactory bulb
24
breathing rhythms
12
olfactory
9
bulb tracks
8
tracks breathing
8
breathing
5
bulb
5
rhythms place
4
place freely
4
freely behaving
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!