Middle-East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen with 36% case-fatality rate in humans. No vaccines or specific therapeutics are currently approved to use in humans or the camel host reservoir. Here, we computationally designed monomeric and homo-oligomeric miniproteins binding with high affinity to the MERS-CoV spike (S) glycoprotein, the main target of neutralizing antibodies and vaccine development. We show that these miniproteins broadly neutralize a panel of MERS-CoV S variants, spanning the known antigenic diversity of this pathogen, by targeting a conserved site in the receptor-binding domain (RBD). The miniproteins directly compete with binding of the DPP4 receptor to MERS-CoV S, thereby blocking viral attachment to the host entry receptor and subsequent membrane fusion. Intranasal administration of a lead miniprotein provides prophylactic protection against stringent MERS-CoV challenge in mice motivating future clinical development as a next-generation countermeasure against this virus with pandemic potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580849 | PMC |
http://dx.doi.org/10.1101/2024.11.03.621760 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!