A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functionally important binding site for a volatile anesthetic in a voltage-gated sodium channel identified by X-ray crystallography. | LitMetric

Volatile general anesthetics are used for inhalational anesthesia in hundreds of millions of surgical procedures annually, yet their mechanisms of action remain unclear. Membrane proteins involved in cell signaling are major targets for anesthetics, and voltage-gated ion channels that mediate neurotransmission, movement, and cognition are sensitive to volatile anesthetics (VAs). In many cases, the effects produced by VAs on mammalian ion channels are reproduced in prokaryotic orthologues, providing an opportunity to investigate VA interactions at high resolution using these structurally simpler prokaryotic proteins. We utilized the bacterial voltage-gated sodium channel (VGSC) NavMs from to investigate its interaction with the widely used VA sevoflurane. Sevoflurane interacted directly with NavMs, producing effects consistent with multisite binding models for VA actions on their targets. We report the identification of one of these interactions at atomic detail providing the first high-resolution structure of a VA bound to a voltage-gated ion channel. The X-ray crystal structure shows sevoflurane binding to NavMs within an intramembrane hydrophobic pocket formed by residues from the voltage sensor and channel pore, domains essential for channel gating. Mutation of the dominant sevoflurane binding-site residue within this pocket, and analogous residues found in similar sites in human VGSCs, profoundly affected channel properties, supporting a critical role for this site in VGSC function. These findings provide the basis for future work to understand the role of VA interactions with VGSCs in both the anesthetic and toxic effects associated with general anesthesia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580951PMC
http://dx.doi.org/10.1101/2024.11.04.621342DOI Listing

Publication Analysis

Top Keywords

voltage-gated sodium
8
sodium channel
8
voltage-gated ion
8
ion channels
8
channel
6
functionally binding
4
binding site
4
site volatile
4
volatile anesthetic
4
voltage-gated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!