Motivation: Alternative splicing generates multiple RNA isoforms from a single gene, enriching genetic diversity and impacting gene function. Effective visualization of these isoforms and their expression patterns is crucial but challenging due to limitations in existing tools. Traditional genome browsers lack programmability, while other tools offer limited customization, produce static plots, or cannot simultaneously display structures and expression levels. RNApysoforms was developed to address these gaps by providing a Python-based package that enables concurrent visualization of RNA isoform structures and expression data. Leveraging plotly and polars libraries, it offers an interactive, customizable, and faster-rendering framework suitable for web applications, enhancing the analysis and dissemination of RNA isoform research.

Availability And Implementation: RNApysoforms is a Python package available at (https://github.com/UK-SBCoA-EbbertLab/RNApysoforms) via an open-source MIT license. It can be easily installed using the piip package installer for Python. Thorough documentation and usage vignettes are available at: https://rna-pysoforms.readthedocs.io/en/latest/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580910PMC
http://dx.doi.org/10.1101/2024.11.06.622357DOI Listing

Publication Analysis

Top Keywords

rna isoform
12
visualization rna
8
structures expression
8
rnapysoforms fast
4
fast rendering
4
rendering interactive
4
interactive visualization
4
rna
4
isoform structure
4
expression
4

Similar Publications

Patients with osteosarcoma (OS), a debilitating pediatric bone malignancy, have limited treatment options to combat aggressive disease. OS thrives on insulin growth factor (IGF)-mediated signaling that can facilitate cell proliferation. Previous efforts to target IGF-1R signaling were mostly unsuccessful, likely due to compensatory signaling through alternative splicing of the insulin receptor () to the proliferative isoform.

View Article and Find Full Text PDF

Motivation: The efficient and reproducible analysis of high-throughput sequencing datasets necessitates the development of methodical and robust computational pipelines that integrate established and bespoke bioinformatics analysis tools, often written in high-level programming languages such as Python. Despite the increasing availability of programming libraries for genomics, there is a noticeable lack of tools specifically focused on transcriptomics. Key tasks in this area include the association of gene features (e.

View Article and Find Full Text PDF

While the production of a draft genome has become more accessible due to long-read sequencing, the annotation of these new genomes has not been developed at the same pace. Long-read RNA sequencing (lrRNA-seq) offers a promising solution for enhancing gene annotation. In this study, we explore how sequencing platforms, Oxford Nanopore R9.

View Article and Find Full Text PDF

RNA-binding protein quaking: a multifunctional regulator in tumour progression.

Ann Med

December 2025

Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China.

Background: Quaking (QKI) is a member of the signal transduction and activators of RNA (STAR) family, performing a crucial multifunctional regulatory role in alternative splicing, mRNA precursor processing, mRNA transport and localization, mRNA stabilization, and translation during tumour progression. Abnormal QKI expression or fusion mutations lead to aberrant RNA and protein expression, thereby promoting tumour progression. However, in many types of tumour, QKI played a role as tumour suppressor, the regulatory role of QKI in tumour progression remains ambiguous.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have been recognised as potential biomarkers due to their specific expression patterns in different biological tissues and their changes in expression under pathological conditions. MicroRNA-122 (miR-122) is a vertebrate-specific miRNA that is predominantly expressed in the liver and plays an important role in liver metabolism and development. Dysregulation of miR-122 expression is associated with several liver-related diseases, including hepatocellular carcinoma and drug-induced liver injury (DILI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!