A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Repeat expansion in a Fragile X model is independent of double strand break repair mediated by Pol θ, Rad52, Rad54l or Rad54b. | LitMetric

Repeat expansion in a Fragile X model is independent of double strand break repair mediated by Pol θ, Rad52, Rad54l or Rad54b.

bioRxiv

Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.

Published: November 2024

Microsatellite instability is responsible for the human Repeat Expansion Disorders. The mutation responsible differs from classical cancer-associated microsatellite instability (MSI) in that it requires the mismatch repair proteins that normally protect against MSI. LIG4, an enzyme essential for non-homologous end-joining (NHEJ), the major pathway for double-strand break repair (DSBR) in mammalian cells, protects against expansion in mouse models. Thus, NHEJ may compete with the expansion pathway for access to a common intermediate. This raises the possibility that expansion involves an NHEJ-independent form of DSBR. Pol θ, a polymerase involved in the theta-mediated end joining (TMEJ) DSBR pathway, has been proposed to play a role in repeat expansion. Here we examine the effect of the loss of Pol θ on expansion in FXD mouse embryonic stem cells (mESCs), along with the effects of mutations in , and genes important for multiple DSBR pathways. None of these mutations significantly affected repeat expansion. These observations put major constraints on what pathways are likely to drive expansion. Together with our previous demonstration of the protective effect of nucleases like EXO1 and FAN1, and the importance of Pol β, they suggest a plausible model for late steps in the expansion process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580960PMC
http://dx.doi.org/10.1101/2024.11.05.621911DOI Listing

Publication Analysis

Top Keywords

repeat expansion
16
expansion
9
break repair
8
microsatellite instability
8
repeat
4
expansion fragile
4
fragile model
4
model independent
4
independent double
4
double strand
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!