A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Convolutional neural network models describe the encoding subspace of local circuits in auditory cortex. | LitMetric

AI Article Synopsis

  • Auditory cortex encodes complex sound features, and convolutional neural networks (CNNs) have been shown to more accurately predict neural responses to natural sounds compared to traditional models.
  • To understand the strengths of CNNs, researchers employed a method to visualize the tuning subspace of a CNN using high-density microelectrode arrays from ferrets listening to various sounds.
  • The analysis revealed that a simplified subspace model could predict neural activity almost as well as the full CNN model and uncovered diverse nonlinear responses of neurons, offering insights into their roles within the auditory processing system.

Article Abstract

Auditory cortex encodes information about nonlinear combinations of spectro-temporal sound features. Convolutional neural networks (CNNs) provide an architecture for generalizable encoding models that can predict time-varying neural activity evoked by natural sounds with substantially greater accuracy than established models. However, the complexity of CNNs makes it difficult to discern the computational properties that support their improved performance. To address this limitation, we developed a method to visualize the tuning subspace captured by a CNN. Single-unit data was recorded using high channel-count microelectrode arrays from primary auditory cortex (A1) of awake, passively listening ferrets during presentation of a large natural sound set. A CNN was fit to the data, replicating approaches from previous work. To measure the tuning subspace, the dynamic spectrotemporal receptive field (dSTRF) was measured as the locally linear filter approximating the input-output relationship of the CNN at each stimulus timepoint. Principal component analysis was then used to reduce this very large set of filters to a smaller subspace, typically requiring 2-10 filters to account for 90% of dSTRF variance. The stimulus was projected into the subspace for each neuron, and a new model was fit using only the projected values. The subspace model was able to predict time-varying spike rate nearly as accurately as the full CNN. Sensory responses could be plotted in the subspace, providing a compact model visualization. This analysis revealed a diversity of nonlinear responses, consistent with contrast gain control and emergent invariance to spectrotemporal modulation phase. Within local populations, neurons formed a sparse representation by tiling the tuning subspace. Narrow spiking, putative inhibitory neurons showed distinct patterns of tuning that may reflect their position in the cortical circuit. These results demonstrate a conceptual link between CNN and subspace models and establish a framework for interpretation of deep learning-based models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581007PMC
http://dx.doi.org/10.1101/2024.11.07.622384DOI Listing

Publication Analysis

Top Keywords

auditory cortex
12
tuning subspace
12
subspace
9
convolutional neural
8
predict time-varying
8
models
5
cnn
5
neural network
4
network models
4
models describe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: