Introduction: Tomato leaf pests and diseases pose a significant threat to the yield and quality of Q6 tomatoes, highlighting the necessity for comprehensive studies on effective control methods.
Methods: Current control measures predominantly rely on experience and manual observation, hindering the integration of multi-source data. To address this, we integrated information resources related to tomato leaf pests and diseases from agricultural standards documents, knowledge websites, and relevant literature. Guided by domain experts, we preprocessed this data to construct a sample set.
Results: We utilized the Named Entity Recognition (NER) model ALBERT-BiLSTM-CRF to conduct end-to-end knowledge extraction experiments, which outperformed traditional models such as 1DCNN-CRF and BiLSTM-CRF, achieving a recall rate of 95.03%. The extracted knowledge was then stored in the Neo4j graph database, effectively visualizing the internal structure of the knowledge graph.
Discussion: We developed a digital diagnostic system for tomato leaf pests and diseases based on the knowledge graph, enabling graphical management and visualization of pest and disease knowledge. The constructed knowledge graph offers insights for controlling tomato leaf pests and diseases and provides new research directions for pest control in other crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578693 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1482275 | DOI Listing |
Viruses
December 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
(TYLCV) poses a significant threat to tomato production, leading to severe yield losses. The current control strategies primarily rely on the use of pesticides, which are often nonselective and costly. Therefore, there is an urgent need to identify more environmentally friendly alternatives.
View Article and Find Full Text PDFInsects
January 2025
Department of Environmental Management, Institute of Environmental Engineering, RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russia.
Tomato leaf miner (Meyrick) (Lepidoptera: Gelechiidae) has gained the status of major pest globally. Integrated pest management (IPM) consists of different control methods. This field study was conducted to evaluate the influence of different pheromone-based traps to attract the male population and the potential of sticky pads of four different colors in capturing the adults in the absence of pheromone lures.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
Biocontrol microbes are environment friendly and safe for humans and animals. To seek biocontrol microbes effective in suppressing is important for tomato production. is a soil-borne pathogen capable of causing wilt in numerous plant species.
View Article and Find Full Text PDFFoods
January 2025
Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti Street 6, 10000 Zagreb, Croatia.
Thermal characteristics of dried sugar beet pulp, leaves and leaf fractions obtained after extraction: fibrous leaf pulp and fibre rich leaf fraction, were investigated by differential scanning calorimetry and thermogravimetry. The sugar beet samples showed a similar thermal behaviour associated with a similar composition. Two endotherms are found on the differential scanning calorimetry curves.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Biotechnological Control of Pests Laboratory, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, 46100, Spain.
The Spodoptera genus is defined as the pest-rich genus because it contains some of the most destructive lepidopteran crop pests, characterized by a wide host range. During feeding, the caterpillars release small amounts of oral secretion (OS) onto the wounded leaves. This secretion contains herbivore-induced molecular patterns (HAMPs) that activate the plant defense response, as well as effectors that may inhibit or diminish the plant's anti-herbivory response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!