Interface Engineering for Improved Large-Current Oxygen Evolution via Partial Phosphorization of Ce-MOF/NiCo-MOF Heterostructure.

Small

State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China.

Published: November 2024

Interface engineering for electrocatalysts has proven to be an effective method for modulating electrocatalytic properties, yet a more efficient and straightforward strategy to construct a valid heterointerface for further enhancing interface effects is urgently needed for boosting oxygen evolution reactions (OER) at large current. Herein, a closely compacted heterostructure combining NiCo-metal-organic framework (MOF) and Ce-MOF is in situ formed through a one-step hydrothermal treatment, and partial phosphorization is employed to further enhance the interface effect between the newly formed urchin-shaped NiCoP shells and hexagonal rod-like Ce-MOF cores on nickel foam (NiCoP/Ce-MOF@NF). Experimental and theoretical results indicate that the heterogeneous NiCoP/Ce-MOF@NF, characterized by a more intensive interface rather than a simple physical mixture, generates an OER-beneficial electronic structure, significantly facilitates charge transfer and reaction kinetics, and creates a synergistically stable structure. The optimal NiCoP/Ce-MOF@NF exhibits remarkable electrocatalytic activity for OER, achieving an ultralow overpotential of 268 mV at a current density of 500 mA cm, and also delivers satisfactory large-current stability of up to 120 h. This work offers a novel approach for designing heterogeneous catalysts with strong interface effects for potential applications in industrial water electrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202408897DOI Listing

Publication Analysis

Top Keywords

interface engineering
8
oxygen evolution
8
partial phosphorization
8
interface effects
8
interface
6
engineering improved
4
improved large-current
4
large-current oxygen
4
evolution partial
4
phosphorization ce-mof/nico-mof
4

Similar Publications

Identifying and understanding the nonlinear behavior of memristive devices.

Sci Rep

December 2024

Chair of Applied Electrodynamics and Plasma Technology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.

Nonlinearity is a crucial characteristic for implementing hardware security primitives or neuromorphic computing systems. The main feature of all memristive devices is this nonlinear behavior observed in their current-voltage characteristics. To comprehend the nonlinear behavior, we have to understand the coexistence of resistive, capacitive, and inertia (virtual inductive) effects in these devices.

View Article and Find Full Text PDF

Ultrathin polymer membrane for improved hole extraction and ion blocking in perovskite solar cells.

Nat Commun

December 2024

Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, China.

Highly efficient perovskite solar cells (PSCs) in the n-i-p structure have demonstrated limited operational lifetimes, primarily due to the layer-to-layer ion diffusion in the perovskite/doped hole-transport layer (HTL) heterojunction, leading to conductivity drop in HTL and component loss in perovskite. Herein, we introduce an ultrathin (~7 nm) p-type polymeric interlayer (D18) with excellent ion-blocking ability between perovskite and HTL to address these issues. The ultrathin D18 interlayer effectively inhibits the layer-to-layer diffusion of lithium, methylammonium, formamidium, and iodide ions.

View Article and Find Full Text PDF

All-polymer piezo-ionic-electric electronics.

Nat Commun

December 2024

Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

Piezoelectric electronics possess great potential in flexible sensing and energy harvesting applications. However, they suffer from low electromechanical performance in all-organic piezoelectric systems due to the disordered and weakly-polarized interfaces. Here, we demonstrated an all-polymer piezo-ionic-electric electronics with PVDF/Nafion/PVDF (polyvinylidene difluoride) sandwich structure and regularized ion-electron interfaces.

View Article and Find Full Text PDF

In situ visualization of interfacial processes at nanoscale in non-alkaline Zn-air batteries.

Nat Commun

December 2024

Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Zn-air batteries (ZABs) present high energy density and high safety but suffer from low oxygen reaction reversibility and dendrite growth at Zn electrode in alkaline electrolytes. Non-alkaline electrolytes have been considered recently for improving the interfacial processes in ZABs. However, the dynamic evolution and reaction mechanisms regulated by electrolytes at both the positive and Zn negative electrodes remain elusive.

View Article and Find Full Text PDF

Discontinuous solid-solid phase transformations play a pivotal role in determining the properties of rechargeable battery electrodes. By leveraging operando Bragg Coherent Diffractive Imaging (BCDI), we investigate the discontinuous phase transformation in LiNiMnO within an operational Li metal coin cell. Throughout Li-intercalation, we directly observe the nucleation and growth of the Li-rich phase within the initially charged Li-poor phase in a 500 nm particle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!