Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The clustered regularly interspaced palindromic repeats (CRISPR) /CRISPR-associated proteins (Cas) system is the immune system in bacteria and archaea and has been extensively applied as a critical tool in bioengineering. Investigation of the mechanisms of catalysis of CRISPR/Cas systems in intracellular environments is essential for understanding the underlying catalytic mechanisms and advancing CRISPR-based technologies. Here, the catalysis mechanisms of CRISPR/Cas systems are investigated in an aqueous two-phase system (ATPS) comprising PEG and dextran, which simulated the intracellular environment. The findings revealed that nucleic acids and proteins tended to be distributed in the dextran-rich phase. The results demonstrated that the cis-cleavage activity of Cas12a is enhanced in the ATPS, while its trans-cleavage activity is suppressed, and this finding is further validated using Cas13a. Further analysis by increasing the concentration of the DNA reporter revealed that this phenomenon is not attributed to the slow diffusion of the reporter, and explained why Cas12a and Cas13a do not randomly cleave nucleic acids in the intracellular compartment. The study provides novel insights into the catalytic mechanisms of CRISPR/Cas systems under physiological conditions and may contribute to the development of CRISPR-based molecular biological tools.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202407194 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!