The study explores a synergistic two-phase system to treat olive mill wastewater (OMW), comprising a multilayer adsorbent filter (pretreatment) and a vertical flow constructed wetland (VFCW). The pretreatment phase includes layers of commercial granular activated carbon (CGAC) and volcanic tuff (VT), while the VFCW phase consists of planted tank with Phragmites australis reeds and unplanted tanks. Initially, municipal wastewater is introduced into the VFCW to establish the required microbial community. Then, pre-treated OMW is passed through the VFCW. The removal rates of various pollutants were assessed. The planted VFCW showed superior removal efficiencies, averaging 97.82% for total chemical oxygen demand (COD), 92.78% for dissolved oxygen demand (COD), 99.61% for total phenolic compounds (TPC), 98.94% for total nitrogen (TN), 96.96% for ammonium, and 95.83% for nitrate. In contrast, the unplanted VFCW displayed lower removal efficiencies, averaging 91.47% for COD, 77.82% for COD, 98.53% for TPC, 97.51% for TN, 92.04% for ammonium, and 90.82% for nitrate. These findings highlight the significant potential of VFCWs, which offer an integrated approach to OMW treatment by incorporating physical, chemical, and biological mechanisms within a single treatment system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583398PMC
http://dx.doi.org/10.1186/s13065-024-01348-3DOI Listing

Publication Analysis

Top Keywords

olive mill
8
mill wastewater
8
vertical flow
8
flow constructed
8
removal efficiencies
8
efficiencies averaging
8
oxygen demand
8
demand cod
8
vfcw
6
wastewater treatment
4

Similar Publications

Olive mill wastewater (OMWW), a byproduct of olive oil extraction, constitutes a natural resource of phenolic compounds. Hydroxytyrosol (HT), the predominant compound, exhibits antioxidant, anti-inflammatory, and neuroprotective effects. This research aims to evaluate the effect of OMWW bioproduct rich in HT on retinal glial function, glutamate metabolism and synaptic transmission alterations mediated by hyperglycemia and dyslipidemia in high-calorie diet (HCD) induced diabetic retinopathy (DR) in Psammomys obesus.

View Article and Find Full Text PDF

The improper disposal of olive mill wastewater (OMW) presents a significant environmental challenge for wastewater treatment plants (WWTPs) in the Gaza Strip. This study aims to evaluate the impact of OMW discharge on the operational efficiency of WWTPs, particularly during the olive harvesting season. To achieve this, samples were collected from both olive mills and WWTPs across the region and analyzed for key parameters such as chemical oxygen demand (COD), biological oxygen demand (BOD), phenols, oil and grease, and total suspended solids (TSS).

View Article and Find Full Text PDF

Olive mill wastewaters (OMWW) are characterized by a large concentration of pollutants, among which polyphenols represent a large part. This study investigated the effect of different dilutions of a culture medium enriched with olive-derived phenolic compounds on Chlorella vulgaris growth and its ability to degrade each one of them. In particular, polyphenols were precisely identified and quantified by HPLC-DAD analysis, showing high removal efficiency by C.

View Article and Find Full Text PDF

Visfatin is an adipokine with mediatory effects on inflammation. It is expressed at low levels in the pig stomach, but its role in the gastrointestinal (GI) tract is not well understood. This study explored visfatin expression and localisation in the stomach and duodenum of piglets fed varying levels of polyphenols derived from olive mill waste extract, known for their antioxidant and immunomodulatory properties.

View Article and Find Full Text PDF

Olive mill wastewater treatment using coagulation/flocculation and filtration processes.

Heliyon

November 2024

Saint Joseph University of Beirut, Faculty of Pharmacy, Department of Nutrition, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon.

Olive mill wastewater (OMWW), a pollutant resulting from the olive oil industry, poses a serious ecological challenge due to its high pollution load. This effluent is highly concentrated in chemical oxygen demand (COD), which is 200 times higher than that of sewage wastewater. Moreover, OMWW is characterized by a strong acidity, high content of fatty matter, and high concentration of phenolic compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!