The synthesis of pyranocoumarin is reported from 4-hydroxycoumarin, styrene oxide, and DMSO in the presence of -TSA·HO at 110 °C using a three-component reaction. Interestingly, a CH moiety from DMSO gets inserted in this reaction to form the pyranocoumarin ring. The plausible mechanism for this interesting reaction was proposed and validated using quantum chemical methods. Interestingly, when the reactions were performed with 7-methoxy-4-hydroxycoumarin and styrene oxides, having an electron-withdrawing group, the reaction followed a two-component pathway, and furocoumarins were obtained in good yields. Switching the solvent from DMSO to CHCN for the same reactants results in the exclusive formation of the novel monomeric product 4-hydroxy-3-styryl-2-chromen-2-one () instead of the expected furocoumarins. Interestingly, one of the novel monomeric products, 4-hydroxy-3-styryl-2-chromen-2-one, directly undergoes unexpected cyclization to provide a more interesting and complex tricyclic product. The salient features of the present strategy are its easy handling, commercial availability of starting material, metal-free synthesis, inexpensive catalysts, environmentally benign, and high atom economy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.4c02028DOI Listing

Publication Analysis

Top Keywords

synthesis pyranocoumarin
8
novel monomeric
8
pyranocoumarin mcrs
4
mcrs modulation
4
modulation approach
4
approach function
4
function substituent
4
substituent forms
4
forms furocoumarin
4
furocoumarin 4-hydroxy-3-styryl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!