AI Article Synopsis

  • Ultra-wideband systems enhance the capacity of existing fiber networks by transferring power between different wavelength channels using the principle of inelastic inter-channel stimulated Raman scattering.
  • Effective management of launch power is crucial for optimizing data throughput, and while particle swarm optimization can solve this issue, it is computationally intensive and sensitive to changes in the objective value.
  • The paper presents a fast, data-driven deep neural network approach that significantly speeds up processing time while maintaining high throughput, along with an iterative greedy algorithm that offers a near-optimal solution with much lower computational demands.

Article Abstract

Ultra-wideband systems expand the optical bandwidth in wavelength-division multiplexed (WDM) systems to provide increased capacity using the existing fiber infrastructure. In ultra-wideband transmission, power is transferred from shorter-wavelength WDM channels to longer-wavelength WDM channels due to inelastic inter-channel stimulated Raman scattering. Thus, managing launch power is necessary to improve the overall data throughput. While the launch power optimization problem can be solved by the particle swarm optimization method it is sensitive to the objective value and requires intensive objective calculations. Hence, we first propose a fast and accurate data-driven deep neural network-based physical layer in this paper which can achieve 99-100 throughput compared to the semi-analytical approach with more than 2 orders of magnitude improvement in computational time. To further reduce the computational time, we propose an iterative greedy algorithm enabled by the inverse model to well approximate a sub-optimal solution with less than 6 performance degradation but almost 3 orders of magnitude reduction in computational time.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.536632DOI Listing

Publication Analysis

Top Keywords

computational time
12
inverse model
8
wdm systems
8
wdm channels
8
launch power
8
orders magnitude
8
fast neural
4
neural network
4
network inverse
4
model maximize
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!