Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we optimize the amplification efficiency of a nanosecond pulse CO laser in a fast flow amplifier using dual-band and multispectral lines techniques. Utilizing a six-temperature model and a random rotational relaxation model, we simulate the time-domain amplification process of dual-band and multispectral lines short-pulse seeds in a fast flow CO laser amplifier, analyzing the effects of input pulse fluence, pulse width, and spectral line composition on amplification efficiency. Compared to single-line 10P(20) amplification, the extraction efficiency of 10.6-µm and 9.6-µm dual-band two-line 15-ns pulses is improved by approximately 70%, surpassing that of 10.6-µm single-band four-line amplification. This study is of great significance for the efficient amplification of short-pulse CO lasers and the generation of extreme ultraviolet light from laser produced plasma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.539532 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!