A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Xenon plasma-focused ion beam milling for fabrication of high-purity, bright single-photon sources operating in the C-band. | LitMetric

Electron beam lithography is a standard method for fabricating photonic micro and nanostructures around semiconductor quantum dots (QDs), which are crucial for efficient single and indistinguishable photon sources in quantum information processing. However, this technique is difficult for direct 3D control of the structure shape, complicating the design and enlarging the 2D footprint to suppress in-plane photon leakage while directing photons into the collecting lens aperture. Here, we present an alternative approach to employ xenon plasma-focused ion beam (Xe-PFIB) technology as a reliable method for the 3D shaping of photonic structures containing low-density self-assembled InAs/InP quantum dots emitting in the C-band range of the 3rd telecommunication window. The method is optimized to minimize the possible ion-beam-induced material degradation, which allows exploration of both non-deterministic and deterministic fabrication approaches, resulting in photonic structures naturally shaped as truncated cones. As a demonstration, we fabricate mesas using a heterogeneously integrated structure with a QD membrane atop an aluminum mirror and silicon substrate. Finite-difference time-domain simulations show that the angled sidewalls significantly increase the emission collection efficiency to approx. 0.9 for NA = 0.65. We demonstrate experimentally a high purity of pulsed single-photon emission (∼99%) and a superior extraction efficiency value reported in the C-band of η = 24 ± 4%.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.534313DOI Listing

Publication Analysis

Top Keywords

xenon plasma-focused
8
plasma-focused ion
8
ion beam
8
quantum dots
8
photonic structures
8
beam milling
4
milling fabrication
4
fabrication high-purity
4
high-purity bright
4
bright single-photon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!