Two-dimensional (2D) semiconductor materials have emerged as one of the hotspots in recent years due to their potential applications in beyond-Moore technologies. In this work, we systematically investigate the electronic and optoelectronic properties of the g-GeC monolayer combined with strain engineering using first-principles calculations. The results show that g-GeC monolayer possesses a suitable direct bandgap and a strain-tunable electronic structure. On this basis, the designed g-GeC monolayer-based two-probe photodetector exhibits a robust broadband optical response in the visible and near-ultraviolet ranges, along with significant polarization sensitivity and high extinction ratio. In addition, strain engineering can greatly improve the optoelectronic performance of the g-GeC-based photodetector and effectively tune its detection range in the visible and near-ultraviolet regions. These findings not only deepen the comprehension of g-GeC nanosheet but also provide the possibility of its application in nano-optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.532381DOI Listing

Publication Analysis

Top Keywords

g-gec monolayer
12
electronic optoelectronic
8
strain engineering
8
visible near-ultraviolet
8
g-gec
5
tunable electronic
4
optoelectronic characteristics
4
characteristics two-dimensional
4
two-dimensional g-gec
4
monolayer first-principles
4

Similar Publications

Two-dimensional (2D) semiconductor materials have emerged as one of the hotspots in recent years due to their potential applications in beyond-Moore technologies. In this work, we systematically investigate the electronic and optoelectronic properties of the g-GeC monolayer combined with strain engineering using first-principles calculations. The results show that g-GeC monolayer possesses a suitable direct bandgap and a strain-tunable electronic structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!