Entangled light sources for illuminating objects offer advantages over conventional illumination methods by enhancing the detection sensitivity of reflecting objects. The core of the quantum advantage lies in effectively exploiting quantum correlations to isolate noise and detect objects with low reflectivity. This work experimentally demonstrates the benefits of using polarization-entangled photon pairs for quantum illumination and shows that the quantum correlation measure, using CHSH value and normalized CHSH value, is robust against losses, noise, and depolarization. We report the detection of objects with reflectivity (η) as low as 0.05 and an object submerged in noise with a signal-to-noise ratio of 0.003 using quantum correlation and residual quantum correlation measures, surpassing previous results. Additionally, we demonstrate that the normalized CHSH value aids in estimating the reflectivity of the detected object. Furthermore, we analyze the robustness of the correlation measure under photon attenuation in atmospheric conditions to show the practical feasibility of real-time applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.531674 | DOI Listing |
Anal Biochem
December 2024
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt. Electronic address:
Magnesium is an essential mineral in biological systems and has a significant impact on brain health. Its deficiency has been found to correlate with irregular metabolic processes and neurodevelopmental disorders. The objective of this research was to establish and validate an analytical approach based on the standard addition methodology for determining endogenous magnesium levels in the serum of autistic and healthy children.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India.
In the relentless pursuit of unraveling the intricate pathophysiology of Alzheimer's disease (AD), amyloid β (Aβ) proteins emerge as focal points due to their pivotal role in disease progression. The pathological hallmark of AD involves the aberrant aggregation of Aβ peptides into amyloid fibrils, precipitating a cascade of neurodegenerative events culminating in cognitive decline and neuronal loss. This study adopts a computational framework to investigate the potential therapeutic efficacy of novel biosurfactants (BS) in mitigating Aβ fibril formation.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electronic and Nanoscale Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
In the era of the Internet of Things (IoT), the transmission of medical reports in the form of scan images for collaborative diagnosis is vital for any telemedicine network. In this context, ensuring secure transmission and communication is necessary to protect medical data to maintain privacy. To address such privacy concerns and secure medical images against cyberattacks, this research presents a robust hybrid encryption framework that integrates quantum, and classical cryptographic methods.
View Article and Find Full Text PDFInorg Chem
December 2024
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
The interplay between quantum effects from magnetic frustration, low-dimensionality, spin-orbit coupling, and crystal electric field in rare-earth materials leads to nontrivial ground states with unusual magnetic excitations. Here, we investigate YbTaO, which hosts a buckled square net of Yb ions with = 1/2 moments. The observed Curie-Weiss temperature is about -1 K, implying an antiferromagnetic coupling between the Yb moments.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Coppito, L'Aquila, Italy.
The intersection of quantum chemistry and quantum computing has led to significant advancements in understanding the potential of using quantum devices for the efficient calculation of molecular energies. Simultaneously, this intersection enhances the comprehension of quantum chemical properties through the use of quantum computing and quantum information tools. This paper tackles a key question in this relationship: Is the nature of the orbital-wise electron correlations in wavefunctions of realistic prototypical cases classical or quantum? We address this question with a detailed investigation of molecular wavefunctions in terms of Shannon and von Neumann entropies, common tools of classical and quantum information theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!