A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly sensitive GaO MSM solar-blind UV photodetector with impact ionization gain. | LitMetric

AI Article Synopsis

  • - A crystal-oriented β-GaO thin film, about 400 nm thick, was successfully grown on a sapphire substrate using atomic layer deposition, allowing for the creation of solar-blind ultraviolet detectors.
  • - These detectors, built with an Au/Ni/GaO/Ni/Au structure, showcased a Schottky barrier height of approximately 1.1 eV, with impressive performance metrics including a responsivity of up to 800 A/W and a detectivity of 6 × 10^10 Jones.
  • - The study found that the significant gain in the detector's performance is primarily due to impact ionization at the electrodes, rather than barrier tunneling or photoconductive effects, substantiated by

Article Abstract

In this study, a (400) crystal-oriented β-GaO thin film with a thickness of approximately 400 nm was grown on a c-plane sapphire substrate using atomic layer deposition. Schottky contact-type metal-semiconductor-metal solar-blind ultraviolet detectors with an Au/Ni/GaO/Ni/Au structure were fabricated on the epitaxial thin films. The Schottky barrier height is about 1.1 eV. The device exhibited a high responsivity of up to 800 A/W, and a detectivity of 6 × 10 Jones while maintaining a relatively fast response speed with a rise time of 4 ms and a fall time of 12 ms. The photo-to-dark current ratio was greater than 10, and the external quantum efficiency exceeded 10, indicating a significant gain in the device. Through the analysis of TCAD simulation and experimental results, it is determined that the impact ionization at the edge of the MSM electrode and channel contact is the main source of gain. Barrier tunneling effects and the photoconductive effect due to different carrier mobilities were not the primary reasons for the gain.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.531784DOI Listing

Publication Analysis

Top Keywords

impact ionization
8
highly sensitive
4
sensitive gao
4
gao msm
4
msm solar-blind
4
solar-blind photodetector
4
photodetector impact
4
gain
4
ionization gain
4
gain study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!