A circularly polarized (CP) single-order high harmonic pulse light source, operating at a photon energy of 27.9 eV, is developed. The production of CP harmonic pulses with a degree of polarization exceeding 99% is achieved by utilizing a high-throughput phase retarder composed of SiC mirrors. Notably, our phase retarder exhibits minimal deviation from quarter-wave phase retardation, with a precision of less than ±λ/50 across a 3.1 eV bandwidth. This wide bandwidth enables effective polarization conversion of attosecond pulses preserved. By implementing the phase retarder, we converted the linear polarization to circular with an ellipticity of 0.93.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.531125 | DOI Listing |
Int J Biol Macromol
January 2025
Civil Engineering Department, Düzce University, Duzce, Turkey. Electronic address:
Nanomaterials (Basel)
January 2025
Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
Developing switchable and multifunctional metasurfaces is essential for high-integration photonics. However, most previous studies encountered challenges such as limited degrees of freedom, simple tuning of predefined functionality, and complicated control systems. Here, we develop a general strategy to construct switchable and multifunctional metasurfaces.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
The Research Institute, The McGill University Health Center, Montreal, QC H4A 3J1, Canada.
Glioblastoma multiforme is an aggressive malignancy with a dismal 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier (BBB). We have previously shown that high-amplitude repetitive transcranial magnetic stimulation (rTMS) in rats allowed the delivery across the BBB of an IGF signaling inhibitor-IGF-Trap.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:
Recombinant GH16B β-agarase-catalyzed liquefaction of 5-7 %(w/v) melted agarose at 50 °C completely hydrolyzed agarose into neoagarohexaose (NA6) and neoagarotetraose (NA4). Subsequent saccharification by recombinant GH50A β-agarase or recombinant GH50A β-agarase/recombinant GH117A α-neoagarobiose hydrolase at 35 °C converted NA6/NA4 into neoagarobiose (NA2) or 3,6-anhydro-L-galactose (L-AHG)/D-galactose, respectively. Purification of NA6/NA4 and NA2 was achieved by Sephadex G-15 column chromatography, while L-AHG was purified by Sephadex G-10, achieving ≥ 98 % purity.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!