In the rapidly evolving field of artificial intelligence, integrated photonic computing has emerged as a promising solution to address the growing demand for high-performance computing with ultrafast speed and reduced power consumption. This study presents what we believe is a novel photonic tensor processing core (PTPC) on a chip utilizing wavelength division multiplexing technology to perform parallel multiple vector-matrix multiplications concurrently, allowing for reconfigurable computing dimensions without changing the hardware scale. Specifically, this architecture significantly enhances the number of operations in convolutional neural networks, making it superior to other photonic computing systems. Experimental evaluations demonstrate the high-speed performance of the PTPC, achieving an impressive total computing speed of 0.252 TOPS and a computing speed per unit as high as 0.06 TOPS /unit in a compact hardware scale. Additionally, proof-of-concept application experiments are conducted on benchmark datasets, including the Modified National Institute of Standards and Technology (MNIST), Google Quickdraw, and CIFAR-10, with high accuracies of 97.86%, 93.51%, and 70.22%, respectively, in image recognition and classification tasks. By enabling parallel operations in PTPC on a chip, this study opens new avenues for exploration and innovation at the intersection of silicon photonics, scalable computation, and artificial intelligence, shaping the future landscape of computing technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.524947DOI Listing

Publication Analysis

Top Keywords

computing
8
photonic tensor
8
tensor processing
8
processing core
8
silicon photonics
8
artificial intelligence
8
photonic computing
8
ptpc chip
8
hardware scale
8
computing speed
8

Similar Publications

deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities.

J Chem Inf Model

January 2025

School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.

Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.

View Article and Find Full Text PDF

Introduction: Varenicline is an α4β2 nicotinic acetylcholine receptor partial agonist with the highest therapeutic efficacy of any pharmacological smoking cessation aid and a 12-month cessation rate of 26%. Genetic variation may be associated with varenicline response, but to date no genome-wide association studies of varenicline response have been published.

Methods: In this study, we investigated the genetic contribution to varenicline effectiveness using two electronic health record-derived phenotypes.

View Article and Find Full Text PDF

Background: Patients with transplant-ineligible relapsed/refractory diffuse large B-cell lymphoma (R/R DLBCL) have limited treatment options and poor outcomes.

Methods: This phase III study (NCT04236141) evaluated the efficacy and safety of polatuzumab vedotin plus bendamustine and rituximab (Pola+BR) versus BR in Chinese patients with transplant-ineligible R/R DLBCL to support regulatory submission in China. Patients were randomized 2:1 to receive Pola+BR or placebo+BR.

View Article and Find Full Text PDF

Objective: To evaluate the postoperative complications and prognosis of renal cell carcinoma (RCC) in a solitary kidney after irreversible electroporation (IRE).

Materials And Methods: A total of 8 patients with 9 RCCs in a solitary kidney treated with computed tomography (CT)-guided IRE from February 2017 to September 2020 were retrospectively analyzed. Follow-up included contrast-enhanced CT or magnetic resonance imaging examinations at 1 day, 1 week, 1 month, 3 months, 6 months, 12 months, and each year after IRE and the evaluation of the incidence of postoperative complications, renal function changes, local tumor recurrence, and metastasis.

View Article and Find Full Text PDF

Importance: Determining spectacle-corrected visual acuity (VA) is essential when managing many ophthalmic diseases. If artificial intelligence (AI) evaluations of macular images estimated this VA from a fundus image, AI might provide spectacle-corrected VA without technician costs, reduce visit time, or facilitate home monitoring of VA from fundus images obtained outside of the clinic.

Objective: To estimate spectacle-corrected VA measured on a standard eye chart among patients with diabetic macular edema (DME) in clinical practice settings using previously validated AI algorithms evaluating best-corrected VA from fundus photographs in eyes with DME.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!