A dynamic holographic vibration measurement system based on a photorefractive crystal of BSO in diffuse mode without the need for an external electric field, which allows for simultaneous measurement of in-plane and out-of-plane high-frequency vibrations, is studied theoretically and experimentally in this work. By adjusting the polarization state of the reference beam, the system introduces a necessary additional phase shift of π/2 to achieve highly sensitive and linear demodulation of small phase-to-intensity vibration signals. Both theoretical analysis and experimental results confirm the system's practicality and safety, demonstrating its ability to accurately detect vibrations without the risks associated with high-voltage drift mode operation. Furthermore, some factors that affect measurement sensitivity were analyzed. The results of measuring in-plane and out-of-plane vibrations showcase the system's superior performance in measuring submicron magnitude vibrations at the MHz level.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.533908DOI Listing

Publication Analysis

Top Keywords

vibration measurement
8
based photorefractive
8
photorefractive crystal
8
in-plane out-of-plane
8
holographic interferometric
4
interferometric vibration
4
measurement
4
measurement based
4
crystal diffusion
4
diffusion mode
4

Similar Publications

Textiles provide a valuable source of information regarding past cultures and their artistic practices. Understanding ancient textiles requires identifying the raw materials used, since the origin of dyes and fibers may be from plants or animals, with the specific species used varying based on geography, trade routes and cultural significance. A selection of nine Chancay textile fragments attributed to 800-1200 CE were studied with liquid chromatography mass spectrometry (LC-MS) and direct analysis in real time mass spectrometry (DART-MS) to identify the chemical compounds in extracts of natural dyes used to create green, blue, red, yellow and black colors.

View Article and Find Full Text PDF

This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.

View Article and Find Full Text PDF

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is an important public health threat, potentially leading to chronic liver disease and liver cancer. Current guidelines recommend using the FIB-4 score for initial identification of subjects at risk of future complications. We formulate a novel population screening strategy based on the Steatosis-Associated Fibrosis Estimator (SAFE) score, recently developed for MASLD risk stratification in primary care.

View Article and Find Full Text PDF

Research on the evolutionary behavior of the particle breakage processes in coarse-grained soil under the action of train load is of practical significance for subgrade construction and maintenance. However, existing studies have not addressed the prediction of particle size distribution evolution. In this paper, the MTS loading system is used to simulate the dynamic train load effect on coarse-grained soil fillers.

View Article and Find Full Text PDF

Experimental research on remote non-contact laser vibration measurement for tunnel lining cavities.

Sci Rep

January 2025

State Key Laboratory of Mountain Bridge and Tunnel Engineering, College of Civil Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.

The lining cavities in tunnels have strong concealment and pose significant risks, seriously affecting tunnel operational safety. Therefore, it is necessary to develop efficient and high-precision detection techniques for tunnel lining cavities. In this study, concrete slabs with different parameter cavities were selected as the research object, and experiments on remote detection using Laser Doppler Vibrometry were conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!