AI Article Synopsis

  • Researchers achieved passive Q-switching laser operation using a Dy-doped zirconium fluoride fiber and a semiconductor saturable absorber mirror (SESAM).
  • The laser produced stable pulse trains with a minimum pulse duration of 460 ns and a maximum repetition frequency of 206 kHz.
  • Peak pulse energy reached up to 1.7 µJ, demonstrating effective laser performance.

Article Abstract

We report on a passive Q-switching laser operation of an in-band pumped Dy-doped zirconium fluoride fiber using a commercially available semiconductor saturable absorber mirror (SESAM). Stable Q-switching pulse trains with minimum pulse duration of 460 ns, highest repetition frequency of 206 kHz, and pulse energy up to 1.7 µJ are demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.525789DOI Listing

Publication Analysis

Top Keywords

fluoride fiber
8
sesam q-switched
4
q-switched dy-doped
4
dy-doped fluoride
4
fiber laser
4
laser µm
4
µm report
4
report passive
4
passive q-switching
4
q-switching laser
4

Similar Publications

Robust low threshold full-color upconversion lasing in rare-earth activated nanocrystal-in-glass microcavity.

Light Sci Appl

January 2025

State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China.

Visible light microlasers are essential building blocks for integrated photonics. However, achieving low-threshold (μW), continuous-wave (CW) visible light lasing at room temperature (RT) has been a challenge because of the formidable requirement of population inversion at short wavelengths. Rare-earth (RE)-activated microcavities, featuring high-quality factor (Q) and small mode volume of whispering gallery modes, offer a great opportunity for achieving infrared-to-visible upconversion (UC) lasing.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) have garnered significant attention due to their high energy conversion efficiency and extensive application potential in energy harvesting and self-powered devices. Recent advancements in electrospun nanofibers, attributed to their outstanding mechanical properties and tailored surface characteristics, have meant that they can be used as a critical material for enhancing TENGs performance. This review provides a comprehensive overview of the developments in electrospun nanofiber-based TENGs.

View Article and Find Full Text PDF

In this work, a battery layup consisting of a poorly flammable ionic liquid electrolyte and a poly(vinylidene fluoride--hexafluoropropylene) (PVdF-HFP) thermoplastic has been developed along with composite anode and cathode electrodes. The developed gel electrolyte exhibits feasible ionic conductivity of about 1 mS/cm at 30 °C. State-of-the-art active electrode materials, i.

View Article and Find Full Text PDF

In recent years, the integration of multifunctional properties into electrospun fabrics has garnered significant attention for applications in wearable devices and smart textiles. A major challenge lies in achieving a balance among intermolecular interactions, structural stability, and responsiveness to external stimuli. In this study, we address this challenge by developing intrinsically healable and photoresponsive electrospun fabrics composed of poly(vinylidene fluoride--hexafluoropropylene) (PVDF-HFP), thermoplastic polyurethane (TPU), and an azobenzene-based ionic liquid ([AzoCMIM][TFSI]).

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs), among the most simple and efficient means to harvest mechanical energy, have great potential in renewable energy utilization. While the output performance of TENGs is still not high enough, which limits its practical application. Here, a poly(vinylidene fluoride) (PVDF)/fluorinated ethylene propylene nanoparticles (FEP NPs) porous nanofiber (PFPN) membrane with waterproof, breathable, surface superhydrophobic and high tribo-negative properties is proposed for achieving high-performance of TENGs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!