A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrabroadband coherent perfect absorption with composite graphene metasurfaces. | LitMetric

We investigate the design and performance of a new multilayer graphene metasurface for achieving ultrabroadband coherent perfect absorption (CPA) in the THz regime. The proposed structure comprises three graphene patterned metasurfaces separated by thin dielectric spacer layers. The top and bottom metasurfaces have crossed shape unit cells of varying sizes, while the middle graphene metasurface is square-shaped. This distinctive geometrical asymmetry and the presence of multiple layers within the structure facilitate the achievement of wideband asymmetric reflection under incoherent illumination. This interesting property serves as a crucial step towards achieving near-total absorption under coherent illumination across a broad frequency range. Numerical simulations demonstrate that the absorption efficiency surpasses 90% across an ultrabroadband frequency range from 2.8 to 5.7 THz, i.e., a bandwidth of 2.9 THz. The CPA effect can be selectively tuned by manipulating the phase difference between the two incident coherent beams. Moreover, the absorption response can be dynamically adjusted by altering the Fermi level of graphene. The study also examines the influence of geometric parameters on the absorption characteristics. The results of this research work offer valuable insights into the design of broadband graphene metasurfaces for coherent absorption applications, and they contribute to the advancement of sophisticated optical devices operating in the THz frequency range.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.534828DOI Listing

Publication Analysis

Top Keywords

frequency range
12
ultrabroadband coherent
8
coherent perfect
8
perfect absorption
8
graphene metasurfaces
8
graphene metasurface
8
absorption
7
graphene
6
absorption composite
4
composite graphene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!