Exploring potential pathways from oxidative stress to ovarian aging.

J Obstet Gynaecol Res

Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan.

Published: January 2025

AI Article Synopsis

  • Women in developed countries are delaying childbearing, increasing the need for fertility treatments like IVF, but success rates for women over 40 are still low due to aged oocytes.
  • Mitochondrial dysfunction, linked to oxidative stress from ongoing ovulation and menstruation, has been identified as a major factor in the decline of egg quality and quantity as women age.
  • Understanding the link between oxidative stress and ovarian aging opens up potential strategies for improving IVF outcomes, highlighting the need for early detection and intervention.

Article Abstract

Aim: In developed nations, women have increasingly deferred childbearing, leading to a rise in demand for infertility treatments and the widespread use of assisted reproductive technologies. However, despite advancements in in vitro fertilization (IVF), live birth rates among women over 40 remain suboptimal. Mitochondrial dysfunction is widely recognized as a key factor in the processes driving the age-related deterioration in both the quantity and quality of oocytes. We aim to summarize current insights into ovarian aging, with a particular focus on pathways that impair mitochondrial function, and explore directions for future research.

Methods: Electronic databases were searched for articles published up to June 30, 2024.

Results: Ongoing ovulation, luteolysis, and menstruation trigger exogenous reactive oxygen species (ROS)-mediated oxidative stress that damages mitochondrial DNA. This, in turn, reduces nuclear gene expression, compromises mitochondrial oxidative phosphorylation, and diminishes adenosine 5' triphosphate production. Persistent endogenous ROS further exacerbate mitochondrial DNA damage and aneuploidy, ultimately causing irreversible chromosomal abnormalities, leading to oocyte aging.

Conclusions: We have delineated the pathway from oxidative stress to ovarian aging. Early detection and management of ovarian aging present challenges and opportunities to enhance IVF treatment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jog.16166DOI Listing

Publication Analysis

Top Keywords

ovarian aging
16
oxidative stress
12
stress ovarian
8
mitochondrial dna
8
mitochondrial
5
exploring potential
4
potential pathways
4
oxidative
4
pathways oxidative
4
ovarian
4

Similar Publications

IGF2BP3 curbed by miR-15c-3p restores disrupted lipid storage and progesterone secretion in chicken granulosa cells under oxidative stress through AKT-Raf1-ERK1/2 signaling pathway.

Poult Sci

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China. Electronic address:

For commercial laying hens, the continuous high-intensity ovulation process leads to a significant accumulation of reactive oxygen species (ROS) in the granulosa cells, inducing oxidative stress, which accelerates ovarian aging and shortens the peak laying period. The molecular mechanisms underlying this process remain poorly understood. Therefore, we modeled the processes of oxidative stress and antioxidant in chicken granulosa cells.

View Article and Find Full Text PDF

The fallopian tube undergoes extensive molecular changes during the menstrual cycle and menopause. We use single-cell RNA and ATAC sequencing to construct a comprehensive cell atlas of healthy human fallopian tubes during the menstrual cycle and menopause. Our scRNA-seq comparison of 85,107 pre- and 46,111 post-menopausal fallopian tube cells reveals substantial shifts in cell type frequencies, gene expression, transcription factor activity, and cell-to-cell communications during menopause and menstrual cycle.

View Article and Find Full Text PDF

Physiological premature aging of ovarian blood vessels leads to decline in fertility in middle-aged mice.

Nat Commun

January 2025

State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.

Ovarian function declines significantly as females enter middle-age, but the mechanisms underlying this decline remain unclear. Here, we utilize whole-organ imaging to observe a notable decrease in ovarian blood vessel (oBV) density and angiogenesis intensity of middle-aged mice. This leads to a diminished blood supply to the ovaries, resulting in inadequate development and maturation of ovarian follicles.

View Article and Find Full Text PDF

Background: Senility influences fertility in women and companion animals, especially horses.

Aim: This study aimed to investigate the effect of aging in horses on the daily changes in the dominant follicle (DF) dynamics and hemodynamics, antimüllerian hormone (AMH), enzymes, antioxidants, and ovarian hormones during the estrous cycle.

Methods: Ovaries of old mares ( = 5, age >20 years) and young native mares ( = 6, age <10 years) were scanned during 6 different estrous cycles from March 2022 to August 2023 with Doppler ultrasound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!