Activation of the ion channel transient receptor potential vanilloid 1 (TRPV1), which is integral to pain perception, leads to an expansion of channel width, facilitating the passage of cations and large organic molecules. However, the permeability of TRPV1 channels to water remains uncertain, owing to a lack of suitable tools to study water dynamics. Here, using upconversion nanophosphors to discriminate between HO and DO, by monitoring water permeability across activated TRPV1 at the single-cell and single-molecule levels, and by combining single-channel current measurements with molecular dynamics simulations, we show that water molecules flow through TRPV1 and reveal a direct connection between water migration, cation flow and TRPV1 functionality. We also show in mouse models of acute or chronic inflammatory pain that the administration of deuterated water suppresses TRPV1 activity, interrupts the transmission of pain signals and mitigates pain without impacting other neurological responses. Solvent-mediated analgesia may inspire alternative options for pain management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41551-024-01288-2 | DOI Listing |
Nat Biomed Eng
November 2024
Department of Chemistry, National University of Singapore, Singapore, Singapore.
Activation of the ion channel transient receptor potential vanilloid 1 (TRPV1), which is integral to pain perception, leads to an expansion of channel width, facilitating the passage of cations and large organic molecules. However, the permeability of TRPV1 channels to water remains uncertain, owing to a lack of suitable tools to study water dynamics. Here, using upconversion nanophosphors to discriminate between HO and DO, by monitoring water permeability across activated TRPV1 at the single-cell and single-molecule levels, and by combining single-channel current measurements with molecular dynamics simulations, we show that water molecules flow through TRPV1 and reveal a direct connection between water migration, cation flow and TRPV1 functionality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!