Oncolytic virotherapy is a promising form of cancer treatment that uses viruses to infect and kill cancer cells. In addition to their direct effects on cancer cells, the viruses stimulate various immune responses partly directed against the tumour. Efforts are made to genetically engineer oncolytic viruses to enhance their immunogenic potential. However, the interplay between tumour growth, viral infection, and immune responses is complex and not fully understood, leading to variable and sometimes counterintuitive therapeutic outcomes. Here, we employ a spatio-temporal model to shed more light on this interplay. We investigate systematically how the properties of virus-induced immunogenic signals (their half-life, rate of spread, and potential to promote T-cell-mediated cytotoxicity) affect the therapeutic outcome. Our simulations reveal that strong immunogenic signals, combined with faster diffusion rates, improve the spread of immune activation, leading to better tumour eradication. However, replicate simulations suggest that the outcome of virotherapy is more stochastic than generally appreciated. Our model shows that virus-induced immune responses can interfere with virotherapy, by targeting virus-infected cancer cells and/or by impeding viral spread. In the presence of immune responses, the mode of virus introduction is important, with systemic viral delivery throughout the tumour yielding the most favourable outcomes. The timing of virus introduction also plays a critical role; depending on the efficacy of the immune response, a later start of virotherapy can be advantageous. Overall, our results emphasise that the rational design of oncolytic viruses requires optimising virus-induced immunogenic signals and strategies that balance viral spread with immune activity for improved therapeutic success.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582614 | PMC |
http://dx.doi.org/10.1038/s41598-024-80542-8 | DOI Listing |
Biophys Chem
January 2025
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic. Electronic address:
The development of small molecule drugs that target protein binders is the central goal in medicinal chemistry. During the lead compound development process, hundreds or even thousands of compounds are synthesized, with the primary focus on their binding affinity to protein targets. Typically, IC or EC values are used to rank these compounds.
View Article and Find Full Text PDFACS Nano
January 2025
Wuya Faculty of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
Antidrug antibodies (ADAs) against biologics present a major challenge for sustained biotherapy, including enzyme replacement therapies and adeno-associated virus (AAV) gene therapies. These antibodies arise from undesirable immune responses, leading to altered pharmacokinetics, reduced efficacy, and adverse reactions. In this study, we introduced a rationally designed lipid-rapamycin (Rapa)-based nanovaccine to restore immune tolerance to biologics and overcome drug resistance.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China.
Food allergy is a complex disease, with multiple environmental factors involved. Considering the regulatory effect of toxin A (Tcd A) on biological processes of allergic reactions, the role of oral exposure to Tcd A on food allergy was investigated. The intestinal permeability and β-hexosaminidase were promoted by Tcd A using the in vitro Caco-2 and HT-29 cells coculture monolayer and bone marrow-derived mast cell (MCs) degranulation model.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America.
The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand.
Expansion of atypical memory B cells (aMBCs) was demonstrated in malaria-exposed individuals. To date, the generation of P. vivax-specific aMBCs and their function in protective humoral immune responses is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!