AI Article Synopsis

  • - A new eco-friendly method was created to produce nanoparticles from dried molokhia leaves, resulting in sustainable materials that act as flame retardants, antibacterial agents, and UV protectors for polymer films, specifically polyvinyl alcohol (PVA) nanocomposites.
  • - The nanoparticles, which are around 8.5 nm in size, significantly improved the flame retardancy and UV protection of PVA films, completely preventing burning and providing over 900% better UV protection compared to films without nanoparticles.
  • - The engineered nanoparticles also inhibited bacterial growth against common strains, offering clear inhibition zones, and a flame retardancy mechanism was proposed, along with an economic assessment for large-scale production of these sustainable nanoparticles.

Article Abstract

A novel and environmentally friendly route was developed for production of sustainable flame retardant, antibacterial and UV protective nanoparticles for polymeric films nanocomposites. For the first time, dried molokhia leaves were engineered into spherical nanoparticles with an average size of 8.5 nm via an eco-friendly, one-pot solid-state ball-milling method. The engineered nanoparticles were proved using spectroscopic and microscopic techniques. The sustainable nanoparticles were employed as an efficient and green flame retardant, antibacterial and UV protective materials for polyvinyl alcohol (PVA) nanocomposite films. The distinct compatibility between PVA chains and spherical nanoparticles afford excellent homogeneous dispersion of each nanoparticle in the polymer matrix. Compared to blank PVA film which burned at a rate of 125 mm/min, the novel nanoparticles achieved significant flame retardancy for polymer nanocomposites films recording zero rate of burning. Their outstanding charring ability and naturally doped elemental composition were attributed to their higher flame retardancy achieved. Moreover, the newly developed multifunctional nanoparticles integrated outstanding UV protection feature to developed polymer nanocomposite films recording UV protection factor superiority of more than 900% compared to nanoparticle free film. Noteworthy to note that, the nanoparticles afford excellent inhibition to bacterial growth against Escherichia coli and Staphylococcus aureus over the surface of developed polymer nanocomposite films achieving clear inhibition zone of 9 and 7.6 mm compared to zero mm for pristine polymer film, respectively. In addition, a proposed and clarified flame retardancy mechanism was presented. Additionally, an assessment was conducted regarding the economic feasibility of producing sustainable multifunctional nanoparticles on an industrial scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582320PMC
http://dx.doi.org/10.1038/s41598-024-80360-yDOI Listing

Publication Analysis

Top Keywords

nanocomposite films
12
flame retardancy
12
nanoparticles
10
polyvinyl alcohol
8
nanocomposites films
8
flame retardant
8
retardant antibacterial
8
antibacterial protective
8
spherical nanoparticles
8
nanoparticles afford
8

Similar Publications

Factors affecting iron and manganese dissolution in groundwater: treatments with simultaneous oxidation and precipitation methods.

Environ Technol

January 2025

Tekirdağ Metropolitan Municipality, TESKİ, Water and Sewerage Administration, Tekirdağ, Turkey.

This study explores variations in groundwater (GW) pH, conductivity, ammonium, iron, and manganese parameters to reveal prospective interactions having an impact on the dissolved metal concentrations. To this end, bivariate and partial correlation procedures were applied to the data to obtain incisive evaluation. Besides characterisation efforts, photocatalytic iron and manganese removal experiments were also carried out with Ni-doped TiO nano-composite thin films (TFs) on real GW samples.

View Article and Find Full Text PDF

Enhancing both strength and plasticity simultaneously in nanostructured materials remains a significant challenge. While grain refinement is effective in increasing strength, it typically leads to reduced plasticity due to localized strain. In this study, we propose a novel design strategy featuring a dual-nano composite structure with grain boundary segregation to enhance the deformation stability of nanostructured materials.

View Article and Find Full Text PDF

Functionalization of Graphene by Interfacial Engineering in Thermally Conductive Nanofibrillated Cellulose Films.

Langmuir

January 2025

Research Center of Nanoscience and Nanotechnology, College of Science, Shanghai University, Shanghai 200444, P. R. China.

Flexible nanocomposites incorporating nanofibrillated cellulose (NFC) hold significant promise for thermal management applications. However, their heat dissipation performance is primarily constrained by the interfacial thermal resistance (). In this work, 1-pyrenemethylamine hydrochloride (PyNH) noncovalent functionalized graphene subsequently self-assembled with NFC through a vacuum-assisted filtration technique.

View Article and Find Full Text PDF

The incorporation of a glassy material into a self-assembled nanoparticle (NP) film can produce highly loaded nanocomposites. Reduction of the NP diameter can lead to extreme nanoconfinement of the glass, significantly affecting the thermal and physical properties of the nanocomposite material. Here, we investigate the photostability and photodegradation mechanisms of molecular nanocomposite films (MNCFs) produced from the infiltration of indomethacin (IMC) molecules into self-assembled films of silica NPs (11-100 nm in diameter).

View Article and Find Full Text PDF

The highly selective and sensitive determination of pesticide residues in food is critical for human health protection. Herein, the specific selectivity of molecularly imprinted polymers (MIPs) was proposed to construct an electrochemical sensor for the detection of carbendazim (CBD), one of the famous broad-spectrum fungicides, by combining with the synergistic effect of bioelectrocatalysis and nanocomposites. Gold nanoparticle-reduced graphene oxide (AuNP-rGO) composites were electrodeposited on a polished glassy carbon electrode (GCE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!