Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electronic nicotine delivery systems (ENDS) are unique from combustible cigarettes due to the availability of flavor options which make these devices popular among adolescents. However, there are no preclinical investigations into the impact of vaporized nicotine on late-developing brain regions such as the prefrontal cortex. Here, we investigated how neuronal function and drug self-administration differed between adult-exposed and adolescent-exposed mice. Male and female adolescent and adult C57BL/6J mice were used in a 20-session e-Vape® self-administration (EVSA) assay. Brains were then extracted and acute slices were used for either patch-clamp electrophysiology or fast-scan cyclic voltammetry. Adolescent-exposed males exhibited greater reinforcement-related behavior compared to their adult-exposed counterparts. However, adolescent-exposed and adult-exposed females exhibited similar levels of reinforcement-related behavior. Adolescent-exposed mice exhibited significant increases in intrinsic excitability of medial prefrontal cortex (mPFC) pyramidal neurons. Additionally, reinforcement-related behavior observed during EVSA assays correlated with adolescent-exposed mPFC neuronal excitability. This did not occur in adult-exposed mice. In the ventral tegmental area (VTA), we observed that upregulation of nicotinic acetylcholine receptors (nAChRs) only correlated with nicotine self-administration in adult and not adolescent-exposed mice. The relationship between self-administration and changes in neuronal excitability in adolescent mice indicates that the mPFC may be important for adolescent nicotine dependence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582578 | PMC |
http://dx.doi.org/10.1038/s42003-024-07272-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!