Two-dimensional magnets with spontaneous topological spin textures have important application prospects in highly integrated spintronic devices. However, so far, the predicted two-dimensional magnets with topological spin textures are mainly based on transition metals, and most of them are semiconductors or metals. Here, based on first-principles calculations, we predict two-dimensional rare-earth-based half-metallic monolayer GdAN (A = Ge, Sn), with 100% spin polarization. Spontaneous topological spin textures, i.e., bimeron clusters, are revealed in those monolayers due to the magnetic frustration and easy-plane magnetic anisotropy. The bimeron clusters can be efficiently tuned through biaxial strain and driven by in-plane spin-polarized current. These results underscore the promising potential of rare-earth-based two-dimensional half-metals for spintronic device applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c05268 | DOI Listing |
Sci Rep
January 2025
Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.
Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China.
Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP) organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons.
View Article and Find Full Text PDFSmall
January 2025
Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing, 401331, China.
Spin-orbit coupling (SOC) induced nontrivial bandgap and complex Fermi surface has been considered to be profitable for thermoelectrics, which, however, is generally appreciable only in heavy elements, thereby detrimental to practical application. In this study, the SOC-driven extraordinary thermoelectric performance in a light 2D material Fe₂S₂ is demonstrated via first-principles calculations. The abnormally strong SOC, induced by electron correlation through 3d orbitals polarization, significantly renormalizes the band structures, which opens the bandgap via Fe 3d orbitals inversion, exposes the second conduction valley with weak electron-phonon coupling, and aligns the energy of Fe 3d and S 3p orbitals with divergent momentum in valence band.
View Article and Find Full Text PDFNat Mater
January 2025
State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai, China.
Polymorphism, commonly denoting diverse molecular or crystal structures, is crucial in the natural sciences. In van der Waals antiferromagnets, a new type of magnetic polymorphism arises, presenting multiple layer-selective magnetic structures with identical total magnetization. However, resolving and manipulating such magnetic polymorphs remain challenging.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Institute for Advanced Study, Tsinghua University, Beijing 100084, China.
In closed systems, the celebrated Lieb-Schultz-Mattis (LSM) theorem states that a one-dimensional locally interacting half-integer spin chain with translation and spin rotation symmetries cannot have a non-degenerate gapped ground state. However, the applicability of this theorem is diminished when the system interacts with a bath and loses its energy conservation. In this letter, we propose that the LSM theorem can be revived in the entanglement Hamiltonian when the coupling to the bath renders the system short-range correlated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!