Large collections of freely available food webs are commonly reused by researchers to infer how biological or environmental factors influence the structure of ecological communities. Although reusing food webs expands sample sizes for community analysis, this practice also has significant drawbacks. As food webs are meticulously crafted by researchers for their own specific research endeavors and resulting publications (i.e., books and scientific articles), the structure of these webs inherently reflects the unique methodologies and protocols of their source publications. Consequently, combining food webs sourced from different publications without accounting for discrepancies that influence network structure may be problematic. Here, we investigate the determinants of structure in freely available food webs sourced from different publications, examining potential disparities that could hinder their effective comparison. Specifically, we quantify structural similarity across 274 commonly reused webs sourced from 105 publications using a subgraph technique. Surprisingly, we found no increased structural similarity between webs from the same ecosystem nor webs built using similar network construction methodologies. Yet, webs sourced from the same publication were very structurally similar with this degree of similarity increasing over time. As webs sourced from the same publication are typically sampled, constructed, and/or exposed to similar biological and environmental factors, publications likely holistically drive their own webs' structure to be similar. Our findings demonstrate the large effect that publications have on the structure of their own webs, which stymies inference when comparing the structure of webs sourced from different publications. We conclude by proposing different approaches that may be useful for reducing these publication-related structural issues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.4467 | DOI Listing |
Chemosphere
January 2025
Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada. Electronic address:
Wild-caught fish are an important subsistence food source in remote northern regions, but they can also be a source of exposure to mercury (Hg), which has known health hazards. We investigated factors and mechanisms that control variability of Hg concentrations in Lake Whitefish (Coregonus clupeaformis) among remote subarctic lakes in Northwest Territories, Canada. Integrating variables that reflect fish ecology, in-lake conditions, and catchment attributes, we aimed to not only determine factors that best explain among-lake variability of fish Hg, but also to provide a whole-ecosystem understanding of interactions that drive among-lake variability of fish Hg.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada. Electronic address:
Mercury (Hg) and persistent organic pollutant (POP) accumulation among species and biomagnification through food webs is typically assessed using stable isotopes of nitrogen (δN) and carbon (δC) in bulk (whole) tissues. Yet, bulk isotopic approaches have limitations, notably from the potential overlap of isotope values from different dietary sources and from spatial variation in source (baseline) signals. Here, we explore the potential of fatty acid carbon isotopes (FA δC) to (1) evaluate the trophic structure of a marine food web, (2) distinguish feeding patterns among four marine mammal consumers, (3) trace contaminant biomagnification through a food web, and (4) explain interspecific variation in contaminants among high-trophic position predators.
View Article and Find Full Text PDFToxics
November 2024
Department of Biology, Cherepovets State University, 5 Lunacharsky pr., 162602 Cherepovets, Russia.
Mercury is considered to be one of the chemical elements posing the greatest threats to the health of most animals and can be transferred from aquatic ecosystems to terrestrial food webs. Many bat species forage above water, and their food sources include aquatic and amphibious organisms. Bats are very sensitive to the slightest changes in the environment.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Growing demand and usage of rare earth elements (REEs) lead to significant pollution in wildlife, but trophic transfer of REEs in different food webs has not been well understood. In the present study, bioaccumulation and food web transfer of 16 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and Sc) were investigated in different terrestrial and aquatic species. Median concentrations of REEs in plant, invertebrate, fish, amphibian, reptile, bird, and vole samples were 488-6030, 296-2320, 123-598, 17.
View Article and Find Full Text PDFMar Environ Res
December 2024
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laoshan Laboratory, Qingdao, 266237, China.
Coastal bays link terrestrial and oceanic carbon reservoirs and play important roles in marine carbon cycles. Particulate organic carbon (POC) produced by phytoplankton is a major autochthonous carbon source in coastal bays. Previous studies on the fate of POC produced by phytoplankton mainly focused on the relationship between phytoplankton and zooplankton in classic food webs, while our knowledge on the roles of bacterioplankton is still limited, particularly in bays under highly intensive aquaculture activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!