Insufficient levels of nitric oxide may lead to chronic and acute wounds. Additionally, it is crucial that nitric oxide is prepared in a controlled-release manner due to its gaseous nature and short half-life. To address this issue, utilizing nitric oxide donors, particularly S-nitrosothiols such as S-nitrosoglutathione (GSNO), could efficiently overcome instability and aid in biomedical applications. Decellularized human amniotic membranes are also best known for their anti-inflammatory, angiogenic, and antimicrobial properties to promote wound epithelization. In this study, a novel nitric oxide-generated wound dressing based on an amniotic membrane was investigated. This construct consisted of a chitosan/β-glycerophosphate thermosensitive hydrogel covered with a decellularized human amniotic layer embedded with GSNO-loaded polylactic acid microparticles. The structure of GSNO was confirmed by spectrometric, elemental, and chemical analyses. The GSNO-loaded microparticles had a diameter of 40.66 ± 6.92 µm, and an encapsulation efficiency of 45.6 ± 6.74%. The hybrid construct and GSNO-loaded microparticles enhanced the long-term stable release of GSNO compared to free GSNO. The construct released nitric oxide ranging from 24 to 68 nM/mg during 7 days. The thermosensitive hydrogel was formed at 32.7 ± 1 °C and had a porous structure with a pore size of 41.76 ± 9.76 µm. The MTT and live/dead assays performed on human dermal fibroblast cells demonstrated suitable cell viability and adhesion to the final construct. Further, hemolysis analysis revealed less than a 5% hemolysis rate due to negligible blood cell adhesion. Overall, the prepared hybrid construct demonstrated suitable characteristics as a potential active wound dressing capable of controlled nitric oxide delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2024.124953 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!