Human thymic stromal lymphopoietin (TSLP) is a pro-inflammatory cytokine located at the top of inflammatory cascade that makes it a promising therapeutic target in allergic asthma. The cell surface receptor of TSLP is a heterodimer consisting of a TSLP receptor (TSLPR) and an interleukin-17 receptor α (IL-7Rα). The TSLPR subunit should be first added to the free TSLP to form a TSLPR/TSLP pre-complex, which further recruits the IL-7Rα subunit to obtain the final TSLPR/IL-7Rα/TSLP complex. Previous works have been focused on targeting the IL-7Rα-binding site of TSLP. Instead, we herein reported an attempt for rational design of cyclic peptidic inhibitors to competitively disrupt the TSLPR-TSLP interaction based on their complex crystal structure by integrating dynamics simulation and energetics analysis as well as experimental assays at molecular level. An interfacial peptide segment derived from the hotspots of TSLPR that cover a specific TSLP-binding site on the TSLPR interface, which is expected to natively form a U-shaped conformation recognized by TSLP and thus compete with the cognate TSLPR for TSLP. The eS4P peptide was further stapled by a disulfide bridge between different residue pairs across its two arms, thus separately resulting in its two stapled cyclic counterparts, i.e. eS4P[189-198] and eS4P[188-200] peptides. Circular dichroism characterized that the stapling can effectively constrain the peptide into a native-like U-shpared conformation in free state, thus largely minimizing the entropy penalty upon its binding to TSLP. Affinity assays revealed that the stapling can considerably improve the peptide binding potency to TSLP by 2.9-fold and 8.3-fold at molecular level. In addition, we further demonstrated that the potent eS4P[188-200] peptide has a good selectivity for its cognate TSLP over other four noncognate cytokines IL-2, IL-7, IL-13 and IL-22 that are relevant with the TSLP. In this respect, it is considered that the disulfide-stapled cyclic peptide-mediated blockade of TLSP inflammatory cascade may be a new and promising therapeutic strategy against allergic asthma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2024.11.012 | DOI Listing |
Int Immunopharmacol
January 2025
Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Background: The blood FGF21 expression has been previously suggested to increase in patients developing atopic dermatitis (AD) and asthma. However, its impact on atopic march is rarely analyzed. The present work focused on investigating the role of Fibroblast Growth Factor 21(FGF21) in atopic march mice and its underlying mechanisms.
View Article and Find Full Text PDFSci Immunol
January 2025
Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (T), which drive the immune response, and regulatory T cells (T), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on T versus T to balance type 2 immunity.
View Article and Find Full Text PDFAm J Rhinol Allergy
January 2025
Division of Otolaryngology - Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Background: Thymic stromal lymphopoietin (TSLP) plays an important role in mediating the type-2-inflammatory response. This study examined how TSLP and interleukin (IL)-4 levels in patients with chronic rhinosinusitis with nasal polyps (CRSwNP) correlated with clinical and postoperative outcomes.
Methods: Solid-phase sandwich ELISA was used to analyze TSLP and IL-4 levels in mucus (n = 47), plasma (n = 17), polyp (n = 30), inferior (n = 25), and middle (n = 26) turbinate tissue collected during functional endoscopic sinus surgery (FESS) in CRSwNP patients (n = 76) and controls (n = 11).
Inflammation
January 2025
College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
Asthma is a prevalent chronic inflammatory disorder of the respiratory tract that not only manifests with respiratory symptoms but also often involves intestinal flora disorders and gastrointestinal dysfunction. Recent studies have confirmed the close relationship between the gut and lungs, known as the "gut-lung axis" theory. Fecal microbiota transplantation (FMT), a method for restoring normal intestinal flora, has shown promise in treating common gastrointestinal diseases.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
Cannabichromene (CBC) is one of the main cannabinoids found in the cannabis plant, and although less well known than tetrahydrocannabinol (THC) and cannabidiol (CBD), it is gaining attention for its potential therapeutic benefits. To date, CBC's known mechanisms of action include anti-inflammatory, analgesic, antidepressant, antimicrobial, neuroprotective, and anti-acne effects through TRP channel activation and the inhibition of inflammatory pathways, suggesting that it may have therapeutic potential in the treatment of inflammatory skin diseases, such as atopic dermatitis (AD), but its exact mechanism of action remains unclear. Therefore, in this study, we investigated the effects of CBC on Th2 cytokines along with the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways involved in AD pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!