Characterisation and modelling of continuous electrospun poly(ɛ- caprolactone) filaments for biological tissue repair.

J Mech Behav Biomed Mater

Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom. Electronic address:

Published: January 2025

This study investigates the mechanical behaviour of poly(ɛ-caprolactone) (PCL) continuous filaments produced by a novel electrospinning (ES) method. These filaments can be processed into woven or braided structures, showing great promises as scaffolds for ligament and tendon repair. Mechanical characterisation of the filaments using DMA and uniaxial tensile tests shows that the filament response is viscoelastic-viscoplastic. Filaments tested using bollard grips present an initially linear elastic response, followed by plastic yielding with two-stage hardening. The filaments are highly stretchable, reaching more than 1000% strain. The different deformation stages are correlated to the evolution of the micro-fibre network observed using SEM, involving the untangling, alignment and stretching of the fibres. A large deformation viscoelastic-viscoplastic model is proposed, which successfully captures the mechanical response of the filaments under non-monotonic loading conditions. Our study also highlights the sensitivity of the measured mechanical response to the type of mechanical grips, namely bollard or screw-side grips.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2024.106810DOI Listing

Publication Analysis

Top Keywords

mechanical response
8
filaments
7
mechanical
5
characterisation modelling
4
modelling continuous
4
continuous electrospun
4
electrospun polyɛ-
4
polyɛ- caprolactone
4
caprolactone filaments
4
filaments biological
4

Similar Publications

Environmental problems have increased the need for sustainable agricultural practices that conserve water and energy. Carob, an eco-friendly crop with multiple health benefits, holds the potential for economic evaluation. This study investigates the carob molasses extraction process, focusing on the influence of temperature and water quantity on the diffusion coefficient.

View Article and Find Full Text PDF

The CRTS (China Railway Track System) II slab ballastless track is widely utilized in high-speed railway construction owing to its excellent structural integrity. However, its interfacial performance deteriorates under high-temperature conditions, leading to significant damage in structural details. Furthermore, the evolution of its performance under these conditions has not been comprehensively studied.

View Article and Find Full Text PDF

In this study, we investigated gene expression in vitro of human primary Aortic smooth muscle cells (AoSMCs) in response to 9% physiological dynamic stretch over a 4 to 72-h timeframe using RT-qPCR. AoSMC were derived from primary culture and were exposed to continuous cycles of stretch and relaxation at 1 Hz by a computer-controlled Flex Jr.™ Tension System.

View Article and Find Full Text PDF

Wearable robots are often powered by elastic actuators, which can mimic the intrinsic compliance observed in human joints, contributing to safe and seamless interaction. However, due to their increased complexity, when compared to direct drives, elastic actuators are susceptible to faults, which pose significant challenges, potentially compromising user experience and safety during interaction. In this article, we developed a fault-tolerant control strategy for torque assistance in a knee exoskeleton and investigated user experience during a walking task while emulating faults.

View Article and Find Full Text PDF

CAR-T cells are more affected than T lymphocytes by mechanical constraints: A microfluidic-based approach.

Life Sci

December 2024

Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain. Electronic address:

Aims: CAR-T cell therapy has attracted considerable attention in recent years owing to its well-known efficacy against haematopoietic malignancies. Nevertheless, this immunotherapy fails against solid tumours due to hostile conditions found in the tumour microenvironment. In this context, many relevant biochemical factors have been thoroughly studied, but crucial mechanical cues have been underestimated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!