Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Enormous progress has been made in the last 20 years since the publication of our review [1] in this journal on transport and traffic phenomena in biology. In this brief article we present a glimpse of the major advances during this period. First, we present similarities and differences between collective intracellular transport of a single micron-size cargo by multiple molecular motors and that of a cargo particle by a team of ants on the basis of the common principle of load-sharing. Second, we sketch several models all of which are biologically motivated extensions of the Asymmetric Simple Exclusion Process (ASEP); some of these models represent the traffic of molecular machines, like RNA polymerase (RNAP) and ribosome, that catalyze template-directed polymerization of RNA and proteins, respectively, whereas few other models capture the key features of the traffic of ants on trails. More specifically, using the ASEP-based models we demonstrate the effects of traffic of RNAPs and ribosomes on random and 'programmed' errors in gene expression as well as on some other subcellular processes. We recall a puzzling empirical result on the single-lane traffic of predatory ants Leptogenys processionalis as well as recent attempts to account for this puzzle. We also mention some surprising effects of lane-changing rules observed in a ASEP-based model for 3-lane traffic of army ants. Finally, we explain the conceptual similarities between the pheromone-mediated indirect communication, called stigmergy, between ants on a trail and the floor-field-mediated interaction between humans in a pedestrian traffic. For the floor-field model of human pedestrian traffic we present a major theoretical result that is relevant from the perspective of all types of traffic phenomena.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plrev.2024.11.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!