All-aqueous (water-in-water) emulsions are increasingly used as droplets reactors. The present communication reports that precursors of a reaction segregated by partitioning between emulsion phases can undergo reaction at the interface, i.e., on droplet surface, while the interface remains liquid. NaSO-in-polyethylene glycol (PEG) emulsions were prepared, and precursors (glucose, asparagine, and tryptophan) of the Maillard reaction were partitioned either inside the droplets (co-encapsulation) or segregated between the emulsion interior and exterior phases. It was found that following the interfacial (i.e., on-droplet) reaction of the segregated precursors, ∼99 % of the Amadori product N-(1-deoxy-D-fructos-1-yl)-L-tryptophan (Fru-Trp) partitioned into the PEG phase. Also, hydrophobic advanced reaction products including β-carboline derivatives and Strecker aldehyde, alongside melanoidins, showed a clear affinity towards the PEG phase. Once the precursors were co-encapsulated within NaSO droplets, following their generation succinimide and pyridine derivatives remained partitioned within the droplets, whereas N-hydroxysuccinimide, pyrrole derivatives, and melanoidins predominantly partitioned into the PEG phase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.142089DOI Listing

Publication Analysis

Top Keywords

peg phase
12
maillard reaction
8
reaction segregated
8
partitioned peg
8
reaction
6
compartmentalization segregation
4
segregation reactants
4
reactants accomplishment
4
accomplishment maillard
4
reaction water-water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!