This study examines methane (CH) emission factors from biogas and wastewater treatment plants, based on primary and secondary data collected from 109 facilities. Primary emission data were measured at 19 facilities representing prevalent plant configurations across Europe. Statistical analysis highlights two categorical variables, namely primary feedstock and plant size, expressed as CH production (≤250 kgh: small and medium-sized plants, >250 kgh: large plants), each of which has a significant impact on whole-site CH emissions. Additionally, digestate storage (gastight vs. not-gastight) has a meaningful effect when considering CH production as a continuous variable in the statistical analysis. Our results indicate that wastewater treatment plants have the highest average CH losses (7.0 % of CH produced, n = 31 or 0.10 kgpopulation equivalent(PE)yr, n = 28), followed by manure-based plants (3.7 %, n = 49), biowaste treatment facilities (2.8 %, n = 11) and energy crop-processing plants (1.9 %, n = 14). Furthermore, small and medium-sized plants have elevated emissions (5.6 %, n = 67) compared to larger counterparts (2.2 %, n = 42), primarily attributed to the absence of gastight digestate storage. Emissions tend to be lower with gastight digestate storage (2.7 %, n = 61) than not-gastight storage options (6.2 %, n = 48). Emission factors were determined for normal operating conditions, with a further investigation into other-than-normal operating conditions revealing temporal or constant emission peaks in eight out of 19 facilities. These peaks, suggesting potential areas for targeted mitigation strategies, were attributed to pressure relief valves, flare ignition problems and major leakages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2024.11.021DOI Listing

Publication Analysis

Top Keywords

emission factors
12
digestate storage
12
plants
8
plant configurations
8
wastewater treatment
8
treatment plants
8
statistical analysis
8
small medium-sized
8
medium-sized plants
8
gastight digestate
8

Similar Publications

Texture analysis generates image parameters from F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT). Although some parameters correlate with tumor biology and clinical attributes, their types and implications can be complex. To overcome this limitation, pseudotime analysis was applied to texture parameters to estimate changes in individual sample characteristics, and the prognostic significance of the estimated pseudotime of primary tumors was evaluated.

View Article and Find Full Text PDF

Coastal populations are susceptible to relative sea-level (RSL) rise and accurate local projections are necessary for coastal adaptation. Local RSL rise may deviate from global mean sea-level rise because of processes such as geoid change, glacial isostatic adjustment (GIA), and vertical land motion (VLM). Amongst all factors, the VLM is often inadequately estimated.

View Article and Find Full Text PDF

Hotspots of nitrogen losses from anthropogenic sources in the Huang-Huai-Hai Basin, China.

Environ Pollut

December 2024

College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, State Key Laboratory of Nutrient Use and Management, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China. Electronic address:

Poor management of nitrogen (N) can lead to serious environmental problems, such as air and water pollution. The accurate identification of priority control areas and emission sources is critical for making effective decisions regarding sustainable N management. This study aimed to identify hotspots for N losses and quantitatively analyze the relative contributions of different emission sources in the Huang-Huai-Hai Basin at the county scale.

View Article and Find Full Text PDF

Turmeric (Curcuma longa L.) has gained significant attention for its medicinal properties, yet its therapeutic applications are often limited by low aqueous solubility and susceptibility to environmental factors. This study investigates the formulation of a curcumin-rich turmeric extract-β-cyclodextrin inclusion complex (TUE-β-CD) to enhance its bioactivity and stability.

View Article and Find Full Text PDF

Background: Lung cancer is a leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) comprising 85% of cases. Due to the lack of early clinical signs, metastasis often occurs before diagnosis, impacting treatment and prognosis. Cardiovascular disease (CVD) is a common comorbidity in lung cancer patients, with shared risk factors exacerbating outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!