Quantifying aquifer heterogeneity using superparamagnetic DNA particles.

J Contam Hydrol

Environmental Hydrogeology Group, Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands; Department of Statistics, Informatics and Modelling, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, the Netherlands.

Published: January 2025

Identifying and determining hydraulic parameters of physically heterogeneous aquifers is pivotal for flow field analysis, contaminant migration and risk assessment. In this research, we applied a novel uniquely sequenced DNA tagged superparamagnetic silica microparticles (SiDNAmag) to quantify hydraulic parameters and associated uncertainties of a heterogeneous sand tank. In the sand tank with lens shaped heterogeneity, we conducted three sets of multi - point injection experiments in unconsolidated (1) homogeneous (zone 0), (2) heterogeneous with a no-conductivity-zone (zone 1), and (3) heterogeneous with a high-conductive-zone (zone 2). From the breakthrough curves (BTC), we estimated the parameters distributions of hydraulic conductivity (k), effective porosity (n), longitudinal dispersivity (α), transverse vertical (α), and transverse horizontal dispersivities (α) applying Monte Carlo simulation approach for BTC fitting. The estimated parameters and associated uncertainties for each of the heterogeneous sections were further statistically compared (distribution non-specific Mann Whitney U test) these parameter distributions with parameter distributions estimated from the conservative salt tracer. While the time of arrival and time to peak concentration of SiDNAmag and salt in effluent were comparable, peak concentration of SiDNAmag was 1-3 log reduced as compared to the salt tracer due to first order kinetic attachment. Nonetheless, the parameters and associated uncertainty distributions (5 %-95 %) of K, n, α, α, and α, determined from SiDNAmag BTCs were statistically equivalent to the salt tracer in all three experiment systems. Through our experimental and modelling approach, our work demonstrated that in a coarse to very coarse grain sand medium, with lens shaped heterogeneity, the uniquely sequenced SiDNAmag were a promising tool to identify heterogeneity and determine hydraulic parameters and associated uncertainty distributions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2024.104454DOI Listing

Publication Analysis

Top Keywords

parameters associated
16
hydraulic parameters
12
salt tracer
12
uniquely sequenced
8
associated uncertainties
8
uncertainties heterogeneous
8
sand tank
8
lens shaped
8
shaped heterogeneity
8
zone heterogeneous
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!