Learning multi-level topology representation for multi-view clustering with deep non-negative matrix factorization.

Neural Netw

School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China. Electronic address:

Published: February 2025

Clustering of multi-view data divides objects into groups by preserving structure of clusters in all views, requiring simultaneously takes into consideration diversity and consistency of various views, corresponding to the shared and specific components of various views. Current algorithms fail to fully characterize and balance diversity and consistency of various views, resulting in the undesirable performance. Here, a novel Multi-View Clustering with Deep non-negative matrix factorization and Multi-Level Representation (MVC-DMLR) learning is proposed, which integrates feature learning, multi-level topology representation, and clustering of multi-view data. Specifically, MVC-DMLR first learns multi-level representation (also called deep features) of objects with deep nonnegative matrix factorization (DNMF), facilitating the exploitation of hierarchical structure of multi-view data. Then, it learns multi-level graphs for each view from multi-level representation, where relations between diversity and consistency are addressed at various resolutions. MVC-DMLR integrates multi-level representation learning, multi-level topology representation learning and clustering, which is formulated as an optimization problem. Experimental results show the superiority of MVC-DMLR to baselines in terms of accuracy, F1-score, normalized mutual information and adjusted rand index.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106856DOI Listing

Publication Analysis

Top Keywords

multi-level representation
16
learning multi-level
12
multi-level topology
12
topology representation
12
matrix factorization
12
multi-view data
12
diversity consistency
12
multi-view clustering
8
clustering deep
8
deep non-negative
8

Similar Publications

Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.

Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.

View Article and Find Full Text PDF

To address the difficulty in detecting workers' violation behaviors in electric power construction scenarios, this paper proposes an innovative method that integrates knowledge reasoning and progressive multi-level distillation techniques. First, standards, norms, and guidelines in the field of electric power construction are collected to build a comprehensive knowledge graph, aiming to provide accurate knowledge representation and normative analysis. Then, the knowledge graph is combined with the object-detection model in the form of triplets, where detected objects and their interactions are represented as subject-predicate-object relationship.

View Article and Find Full Text PDF

Aim: To explore the types of barriers that midwives face when practicing or attempting to practice in rural and remote locations.

Design: An integrative review using the Ecological Systems Theory.

Methods: The review was guided by Whitmore and Knafl.

View Article and Find Full Text PDF

American Indians (AIs) experience continued disparities in incidence, mortality, and survival on cancers responsive to early screening in the USA. In New Mexico, AIs compared with other racial/ethnic populations are substantially less likely to adhere to recommended screening guidelines. Our study focuses on increasing cancer awareness using culturally, linguistically, and health literacy appropriate informational materials.

View Article and Find Full Text PDF

Humans effortlessly interpret images by parsing them into part-whole hierarchies; deep learning excels in learning multi-level feature spaces, but they often lack explicit coding of part-whole relations, a prominent property of medical imaging. To overcome this limitation, we introduce Adam-v2, a new self-supervised learning framework extending Adam [79] by explicitly incorporating part-whole hierarchies into its learning objectives through three key branches: (1) Localizability, acquiring discriminative representations to distinguish different anatomical patterns; (2) Composability, learning each anatomical structure in a parts-to-whole manner; and (3) Decomposability, comprehending each anatomical structure in a whole-to-parts manner. Experimental results across 10 tasks, compared to 11 baselines in zero-shot, few-shot transfer, and full fine-tuning settings, showcase Adam-v2's superior performance over large-scale medical models and existing SSL methods across diverse downstream tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!