Methane seepage leads to a specific microplastic aging process in the simulated cold seep environment.

J Hazard Mater

Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. Electronic address:

Published: November 2024

Marine microplastics pose a significant threat to ecosystems, and deep-sea regions serve as critical sinks for these pollutants. Among these regions, cold seeps harbor relatively high concentrations of microplastics. However, research on the aging of microplastics under low-temperature, dark, methane-abundant, and high-pressure conditions remains limited. Seawater and sediment were collected from various Haima cold seepage sites to simulate seepage environments in 200-mL high-pressure reactors. Four types of microplastics at high concentrations (approximately 10 %) were cultured and monitored over two months to explore how they aged. The key findings are as follows: (1) Compared to areas of weak seepage, methane seepage accelerated microplastic aging, as evidenced by increased surface roughness, enhanced C-O and (CO)-O bond formation, increased microbial colonization, and reduced contact angles. (2) Microplastic aging is more pronounced in sediments than in seawater, with biodegradable polylactic acid (PLA) exhibiting the most significant aging characteristics and carbon contribution. (3) Aged microplastics induce greater disturbances in inorganic nutrient levels than in organic matter, impacting nitrogen cycle processes involving nitrate, nitrite, and ammonium. This study results reveal the fundamental aging characteristics of microplastics in extremely deep seas and highlight their potential ecological effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136572DOI Listing

Publication Analysis

Top Keywords

microplastic aging
12
methane seepage
8
high concentrations
8
aging characteristics
8
aging
6
microplastics
6
seepage leads
4
leads specific
4
specific microplastic
4
aging process
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!