In the interdisciplinary domains of medicine and chemistry, addressing the issue of residual drugs (toxicants) that fail to fully exert therapeutic effects while potentially inducing toxic side effects has become increasingly critical. Researchers are actively seeking innovative solutions to this multifaceted challenge. Conventional small-molecule antagonists, commonly used in clinical settings, typically depend on "drug-receptor interactions" yet pose substantial developmental challenges. Recent advancements in the investigation of macrocyclic host compounds present a promising alternative. By leveraging the principles of host-guest chemistry, these macrocyclic hosts form stable inclusion complexes with residual drugs (toxicants), thereby decreasing their free concentration in the bloodstream and effectively mitigating associated toxic side effects. Consequently, macrocyclic host compounds represent a novel class of supramolecular antagonists (SAs). This article reviews recent progress in the application of macrocyclic host molecules-such as cyclodextrin, calix[n]arene, pillar[n]arene, and cucurbit[n]uril-as SA and examines current issues and future development prospects within the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2024.107974 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!