Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The escalating threat of healthcare-associated infections highlights the urgent need for biocompatible antibacterial materials that effectively combat drug-resistant pathogens. In this study, we present a novel fabrication method for triple-helical recombinant collagen (THRC)-silver hybrid nanofibers, specifically designed for anti-methicillin-resistant(MRSA) applications. Utilizing a silver-mediated crosslinking strategy, we harness a low-power 38 W lamp to enable silver ions (Ag) to mediate crosslinking across various proteins. Mechanistic insights reveal the pivotal role of nine amino acids in facilitating this reaction. The THRC maintains its native structure, forming well-ordered nanofibers, while other globular proteins form a distinctive network-like structure. THRC also serves as a reducing and dispersing agent, facilitating thesynthesis of highly dispersed silver nanoparticles (AgNPs) (∼7 nm in diameter) within the nanofibers. Systematic investigation of the reaction conditions between THRC and Agdemonstrates the versatility of this novel approach for nanofiber fabrication. The incorporation of AgNPs imparts exceptional antibacterial activity to the THRC/AgNPs nanofibers, exhibiting a minimum inhibitory concentration of 19.2 mg land a minimum bactericidal concentration of 153.6 mg lagainst MRSA. This innovative approach holds significant potential for developing antibacterial protein-based biomaterials for infection management in wound healing and other biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/ad95d3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!