AI Article Synopsis

  • - This study investigates Fe(III) and Co(II) complexes synthesized from Albendazole and Norfloxacin, highlighting their thermal stability, low water solubility, and neutral conductivity characteristics that make them suitable for various applications.
  • - Spectroscopic analyses (FTIR and UV-Vis) confirm strong ligand-metal interactions and reveal octahedral geometries; the complexes exhibit a 1:1:1 stoichiometry and substantial thermal stability alongside unique decomposition behaviors.
  • - DFT calculations indicate that the metal complexes have reduced energy gaps compared to the original ligands, suggesting increased reactivity and biological activity, which enhances their antibacterial, anti-fungal, and anti-inflammatory properties beyond those of standard antibiotics.

Article Abstract

This study presents a comprehensive characterization of the Fe(III) (C1) and Co(II) (C2) complexes that were synthesized from the Albendazole (Alb) and Norfloxacin (Nor) ligands. The complexes exhibit remarkable thermal stability, low water solubility, and a non-electrolytic nature, characteristics that enhance their suitability for diverse applications. Conductivity measurements indicate molar conductivities of 9.85 and 8.59 Ω cm mol, confirming their status as neutral molecules. Fourier Transform Infrared (FTIR) spectroscopy reveals significant ligand-metal interactions, marked by shifts in vibrational frequencies that confirm chelation, while Ultraviolet-Visible (UV-Vis) spectroscopy supports the identification of octahedral geometries for both complexes. Magnetic moment assessments align with their electronic configurations, and stoichiometric analysis consistently shows a 1:1:1 ratio, further validated by mass spectrometry. Thermal stability studies highlight anhydrous characteristics and distinct thermal decomposition behaviors, underscoring their structural integrity. Employing Density Functional Theory (DFT) calculations using the B3LYP functional, we evaluate the electronic properties of the ligands and their metal complexes, revealing reduced energy gaps (ΔE) of 2.29 eV for C1 and 2.15 eV for C2, significantly lower than those of the ligands (Alb: 4.61 eV, Nor: 4.17 eV), indicating enhanced reactivity and potential biological activity. Additionally, molecular electrostatic potential (MEP) maps provide insights into charge distributions, suggesting critical regions for interactions with biomolecules. Notably, the results demonstrate that metal coordination significantly enhances antibacterial/anti-fungal activity surpassing both the free ligands and the standard antibiotic Ofloxacin/Fluconazole. Furthermore, the complexes show significant improvement in anti-inflammatory activity by inhibiting protein denaturation more effectively than their ligand counterparts. Molecular docking studies reveal stronger binding affinities and interactions with antimicrobial target proteins 1HNJ and 5IKT, attributed to enhanced hydrophobic interactions and hydrogen bonding. These findings position C1 and C2 as promising candidates for developing effective antimicrobial therapies, highlighting the crucial role of metal ions in enhancing biological reactivity and addressing resistant strains of pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202402646DOI Listing

Publication Analysis

Top Keywords

molecular docking
8
biological activity
8
metal complexes
8
thermal stability
8
complexes
7
structural dft
4
dft molecular
4
docking biological
4
activity
4
activity albendazole-norfloxacin
4

Similar Publications

Efficient Expression and Activity Optimization of Manganese Peroxidase for the Simultaneous Degradation of Aflatoxins AFB, AFB, AFG, and AFG.

J Agric Food Chem

January 2025

School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.

Aflatoxins (AFs), notorious mycotoxins that pose significant risks to human and animal health, make biodegradation extremely crucial as they offer a promising approach to managing and reducing their harmful impacts. In this study, we identified a manganese peroxidase from (Mnp) through protein similarity analysis, which has the capability to degrade four AFs (AFB, AFB, AFG, and AFG) simultaneously. The gene encoding this enzyme was subject to codon optimization, followed by cold shock induction expression using the pColdII vector, leading to the soluble expression of manganese peroxidase (Mnp) in .

View Article and Find Full Text PDF

The synthesis and characterization of benzo[d]thiazol-2-amine derivatives, which were prepared by reacting benzothiazole with para-aminobenzophenone in ethanol, supplemented with glacial acetic acid. Subsequently, compound (2) was synthesized from compound (1) using NaNO, HPO, and HNO in a water-based solvent, resulting in 2-hydroxy-1-naphthaldehyde. Another derivative, compound (3), was synthesized by reacting compound (1) with vanillin under similar conditions.

View Article and Find Full Text PDF

Neohesperidin Improves Depressive-Like Behavior Induced by Chronic Unpredictable Mild Stress in Mice.

Neurochem Res

January 2025

Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.

Depression is a common and complex neuropsychiatric disorder affecting people of all ages worldwide, associated with high rates of relapse and disability. Neohesperidin (NEO) is a dietary flavonoid with applications in therapeutics; however, its effects on depressive-like behavior remain unknown. Here, we evaluated the effects of NEO on depressive-like behavior induced by chronic and unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) stands as a major contributor to mortality worldwide, with cigarette smoke being a primary causative factor. Acacetin has been reported to possess lung protective effects. However, the precise role and mechanism of Acacetin in COPD remains elusive.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Homi Bhabha National Institute, Mumbai, Maharashtra, India.

Background: Receptor Tyrosine kinase-mediated signaling is indispensable for the cell's normal functioning, the perturbation of which leads to disease conditions. The altered expression and activity of several Receptor Tyrosine kinases (RTKs) are known to regulate the pathophysiology of Alzheimer's disease (AD). However, the mechanistic details remain illusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!