The world aims to ensure environmental sustainability and consolidate agricultural factor productivity, yet the excruciating impact of climate change coincides and remains a persistent threat. Therefore, the study aims to estimate the technical efficiency of cereal crop yields and investigate the impacts of climate change on agricultural factor productivity. For this purpose, panel data from 35 sub-Saharan African countries between 2005 and 2020 was employed. For analysis, the pooled OLS and stochastic frontier models were employed. The results revealed that in the region, the average efficiency score for producing cereal crops between 2005 and 2020 was 83%. The stochastic frontier model results showed that labour contributed 51.5% and fertilizer contributed 5.7% to raising the technical efficiency of cereal crop yields, whereas arable land per hectare reduced the technical efficiency of cereal yields by 44.7%. The pooled OLS regression result showed that climate change proxies (CO2 and methane emissions) diminish land, labour, and fertilizers productivity at a 1% significance level, whereas GDP per capita boosts significantly the total factor productivity in agriculture. This confirmed how climate change reduced land, labour, and fertilizer input productivity. The results concluded that the region had a high level of technical efficiency; of which labour and fertilizer inputs contributed the largest share; however, their productivity has dwindled due to climate change. To increase cereal crop yield efficiency and limit the adverse effects of climate change on agricultural input productivity, the region should combine skilled and trained labour and fertilizer with sophisticated agriculture technologies, as well as adopt climate resistance technologies (weather- resistant variety seed and planting revolution mechanisms).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581406 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310989 | PLOS |
PLoS One
January 2025
College of Natural and Computational Sciences, Hawai'i Pacific University, Honolulu, HI, United States of America.
Climate change is imposing multiple stressors on marine life, leading to a restructuring of ecological communities as species exhibit differential sensitivities to these stressors. With the ocean warming and wind patterns shifting, processes that drive thermal variations in coastal regions, such as marine heatwaves and upwelling events, can change in frequency, timing, duration, and severity. These changes in environmental parameters can physiologically impact organisms residing in these habitats.
View Article and Find Full Text PDFJ Gen Intern Med
January 2025
Harvard Medical School, Boston, MA, USA.
Environ Monit Assess
January 2025
Department of Natural Resource Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia.
Assessing the impacts of forest cover change on carbon stock and soil moisture dynamics is critical for understanding environmental degradation and guiding sustainable land management. This study evaluates the effects of forest cover change on carbon stock and soil moisture dynamics in Nensebo Forest from 1993 to 2023 using geospatial techniques. Landsat imagery including TM (1993), ETM + (2009), and OLI/TIRS (2023) were used.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada.
Spilled plant-based oils behave very differently in comparison to petroleum oils and require different clean-up measures. They do not evaporate, disperse, dissolve, or emulsify to a significant degree but can polymerize and form an impermeable cap on sediment, smothering benthic media and resulting in an immediate impact on the wildlife community. The current study explored the application of rapid up-to-date direct analysis in real time (DART) with high-resolution mass spectrometry for plant-based oil typing.
View Article and Find Full Text PDFProtoplasma
January 2025
Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!