Features of the natural life cycle of the budding yeast Saccharomyces cerevisiae were crucial to its domestication as a laboratory experimental model, especially the ability to maintain stable haploid clones and cross them at will to combine alleles via meiosis. Stable haploidy results from mutations in HO, which encodes an endonuclease required for haploid-specific mating-type switching. Previous studies found an unexpected diversity of HO alleles among natural isolates within a small geographic area. We developed a hands-on field and laboratory activity for middle school students in Denver, Colorado, USA to isolate wild yeast from oak bark, identify species via DNA sequencing, and sequence HO from S. cerevisiae isolates. We find limited HO diversity in North American oak isolates, pointing to efficient, continuous dispersal across the continent. By contrast, we isolated the "dairy yeast", Kluyveromyces lactis, from a tree <10 m away and found that it represents a new population distinct from an oak population in an adjacent state. The outreach activity partnered middle school, high school, and university students in making scientific discoveries and can be adapted to other locations and natural yeast habitats. Indeed, a pilot sampling activity in southeast Texas yielded S. cerevisiae oak isolates with a new allele of HO and, from a nearby prickly pear cactus, a heat-tolerant isolate of Saccharomyces paradoxus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/g3journal/jkae270 | DOI Listing |
Biomed Pharmacother
December 2024
Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand. Electronic address:
Model organisms are commonly used to study human diseases; we set out to understand the relevance of several model organisms with relation to the σ1R protein. The study explored the interactions of σ1R with various agonists, antagonists across different species. Ligand and protein-protein (σ1R-BiP) docking approaches were used to understand the significance of σ1R in modulating neuroprotective mechanisms and its potential role in Alzheimer's.
View Article and Find Full Text PDFMol Breed
January 2025
College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China.
Unlabelled: Apple is a crucial economic product extensively cultivated worldwide. Its production and quality are closely related to the floral transition, which is regulated by intricate molecular and environmental factors. () is a transcription factor that is involved in regulating plant growth and development, with certain play significant roles in regulating flowering.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
In Iran, there is limited information regarding the species distribution and antifungal susceptibility profiles of yeast isolates from drug addicts suffering from oral candidiasis (OC). In this study, 104 yeast isolates, including 98 Candida species and 6 uncommon yeasts, were collected from 71 drug abusers with OC. The susceptibility profiles of Candida spp.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China. Electronic address:
Heat shock transcription factors (Hsfs) play important roles in plant developmental regulations and various abiotic stress responses. However, their evolutionary mechanism of freezing tolerance remains poorly understood. In our previous transcriptomics study based on DNA methylation sequencing, the BnaHsfA2 was found to be significantly accumulated in winter rapeseed (Brassica rapa L.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
December 2024
Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China. Electronic address:
Sphingolipids are crucial components of cell membranes and serve as important signaling molecules. Ceramide, as the central hub of sphingolipid metabolism, plays a significant role in various biological processes, including the cell cycle, apoptosis, and cellular aging. Alterations in sphingolipid metabolism are implicated in cellular aging, however, the specific sphingolipid components and intrinsic mechanisms that mediate this process remain largely uncharacterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!