Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Motor imagery (MI) classification has been commonly employed in making brain-computer interfaces (BCI) to manage the outside tools as a substitute neural muscular path. Effectual MI classification in BCI improves communication and mobility for people with a breakdown or motor damage, delivering a bridge between the brain's intentions and exterior actions. Employing electroencephalography (EEG) or aggressive neural recordings, machine learning (ML) methods are used to interpret patterns of brain action linked with motor image tasks. These models frequently depend upon models like support vector machine (SVM) or deep learning (DL) to distinguish among dissimilar MI classes, such as visualizing left or right limb actions. This procedure allows individuals, particularly those with motor disabilities, to utilize their opinions to command exterior devices like robotic limbs or computer borders. This article presents a Boosted Harris Hawks Shuffled Shepherd Optimization Augmented Deep Learning (BHHSHO-DL) technique based on Motor Imagery Classification for BCI. The BHHSHO-DL technique mainly exploits the hyperparameter-tuned DL approach for MI identification for BCI. Initially, the BHHSHO-DL technique performs data preprocessing utilizing the wavelet packet decomposition (WPD) model. Besides, the enhanced densely connected networks (DenseNet) model extracts the preprocessed data's complex and hierarchical feature patterns. Meanwhile, the BHHSHO technique-based hyperparameter tuning process is accomplished to elect optimal parameter values of the enhanced DenseNet model. Finally, the classification procedure is implemented by utilizing the convolutional autoencoder (CAE) model. The simulation value of the BHHSHO-DL methodology is performed on a benchmark dataset. The performance validation of the BHHSHO-DL methodology portrayed a superior accuracy value of 98.15% and 92.23% over other techniques under BCIC-III and BCIC-IV datasets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581255 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313261 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!