AI Article Synopsis

  • Amorphophallus konjac, or konjac, is a valuable plant in Asia, known for both economic and medicinal properties, but it is facing a leaf blight outbreak in Yunnan, China as of July 2024.
  • The disease causes brown lesions on leaves that worsen over time, leading to significant drops in plant health and corm yield.
  • To identify the bacteria responsible, researchers isolated samples, characterized them using genetic sequencing, and found that their isolates closely resembled a strain of K. cowanii.

Article Abstract

Amorphophallus konjac, commonly known as konjac, has significant economic and medicinal value, particularly in Asian countries (Gao et al. 2022). In July 2024, an outbreak of leaf blight was observed in a one-hectare field in Fuyuan (25.67°N; 104.25°E), Yunnan, China. The disease manifested as brown lesions starting at the leaf tips or edges, which rapidly darkened and expanded, leading to leaf necrosis. In severe cases, the disease affected the overall plant health, reducing corm yield and quality significantly. To isolate the causal agent, six diseased leaves from six plants were surface disinfected, and the junction region of healthy and diseased tissues was excised and homogenized in a 15-ml sterile centrifuge tube with 2 ml of sterile distilled water. The resulting bacterial suspension was serially diluted to 10-5 and 200 μl of the diluted sample was spread on LB agar plates. Three pure cultures (designated MY1, MY2, and MY3) were obtained through successive streaking. The isolated colonies were light yellow, convex, and nearly round in shape. Genomic DNA from the three pure isolates was extracted and used to amplify partial sequences of 16S ribosomal RNA (16S rRNA) with primers 27F/1492R (Brady et al. 2008), the beta-subunit of RNA polymerase (rpoB) using primers CM81-F/CM32b-R (Polz and Cavanaugh 1998), and the DNA gyrase subunit B (gyrB) with primers UP-1/UP-2r (Yamamoto and Harayama 1995). The sequences for 16S rRNA (accession nos. PQ288765-PQ288767), rpoB (PQ304887-PQ304889), and gyrB (PQ304884-PQ304886) were deposited in GenBank. Nucleotide BLAST analysis showed that the rpoB, gyrB and 16S rRNA sequences of isolate MY1 shared 99.36, 98.89 and 99.86% identity with those of K. cowanii strains (EU629168, CP107077 and OR121838), respectively. Furthermore, a multigene phylogenetic analysis revealed a strongly supported clade including strain MY1, MY2, MY3 and other K. cowanii isolates. To test pathogenicity, a greenhouse experiment was conducted using five four-month-old healthy A. konjac plants grown in pots. For each plant, three leaves were inoculated with a bacterial suspension of strain MY1 (108 CFU/ml) via leaf infiltration. Another set of three leaves were infiltrated with sterile water as controls. These plants were enclosed in plastic bags for 24 hours post-inoculation. Inoculated plants initially exhibited brown lesions with a yellow halo, which subsequently developed into dark symptoms within seven days. Control plants remained symptom-free. This experiment was repeated three times with consistent results. K. cowanii was reisolated from infected leaves and identified based on Sanger sequencing of 16S rRNA, thus fulfilling Koch's postulates. In recent years, K. cowanii has been confirmed to cause fruit blotch on Trichosanthis fructus (Chen et al. 2024), stalk rot in foxtail millet (Han et al. 2023), bacterial wilt on patchouli (Zhang et al. 2022), and bacterial blight on soybean (Krawczyk and Borodynko-Filas 2020). To our knowledge, this is the first report of K. cowanii causing leaf blight on A. konjac worldwide. This study identifies a previously unrecognized disease affecting konjac production. The identification of the causal agent provides essential information for the diagnosis and management of this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-09-24-1980-PDNDOI Listing

Publication Analysis

Top Keywords

16s rrna
16
bacterial blight
8
leaf blight
8
brown lesions
8
causal agent
8
bacterial suspension
8
three pure
8
my1 my2
8
my2 my3
8
sequences 16s
8

Similar Publications

Gut bacteria Prevotellaceae related lithocholic acid metabolism promotes colonic inflammation.

J Transl Med

January 2025

Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.

Background: The conversion of primary bile acids to secondary bile acids by the gut microbiota has been implicated in colonic inflammation. This study investigated the role of gut microbiota related bile acid metabolism in colonic inflammation in both patients with inflammatory bowel disease (IBD) and a murine model of dextran sulfate sodium (DSS)-induced colitis.

Methods: Bile acids in fecal samples from patients with IBD and DSS-induced colitis mice, with and without antibiotic treatment, were analyzed using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS).

View Article and Find Full Text PDF

The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.

View Article and Find Full Text PDF

Optimization and characterization studies of poultry waste valorization for peptone production using a newly Egyptian Bacillus subtilis strain.

AMB Express

January 2025

Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt.

Valorization of poultry waste is a significant challenge addressed in this study, which aimed to produce cost-effective and sustainable peptones from poultry waste. The isolation process yielded the highly potent proteolytic B.subtilis isolate P6, identified through 16S rRNA gene sequencing to share 94% similarity with the B.

View Article and Find Full Text PDF

The present study investigates the supplemental effects of chia seed oil (CSO) on the growth performance and modulation of intestinal microbiota in Labeo rohita fingerlings. Four diets were formulated with graded levels of CSO: 1.0%, 2.

View Article and Find Full Text PDF

SARS-CoV-2 is the viral pathogen responsible for COVID-19. Although morbidity and mortality frequently occur as a result of lung disease, the gastrointestinal (GI) tract is recognized as a primary location for SARS-CoV-2. Connections and interactions between the microbiome of the gut and respiratory system have been linked with viral infections via what has been referred to as the 'gut-lung axis' with potential aerodigestive communication in health and disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!