Bionanotechnology research has surged to the forefront of scientific innovation, propelling the exploration of cutting-edge technologies and interdisciplinary collaboration. Biomimicry, which harnesses nature's ingenuity, drives the development of novel research-based solutions in diverse fields such as vaccines, medicine, and biomedical devices. Nature's role is becoming increasingly pivotal in addressing complex challenges related to environmental conservation, human health, and pandemic preparedness, including those posed by SARS-CoV-2 and other emerging pathogens. Progress in this domain encompasses understanding nature´s mechanisms to develop advanced materials inspired by biological structures. Biomimetic innovations have the potential to revolutionize industries, reduce environmental impacts, and facilitate a more harmonious relationship between humans and nature while considering bioethics, underlining the necessity of conducting responsible research and implementing biomimetic advancements conscientiously. As biomimicry continues to grow, integrating ethical guidelines and policies will ensure these nature-inspired technologies' sustainable development and application, ultimately contributing to a more resilient and adaptive society. This mini-review article broadly overviews bionanotechnology applications based on natural examples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582260PMC
http://dx.doi.org/10.1186/s11671-024-04153-yDOI Listing

Publication Analysis

Top Keywords

nature-inspired innovations
4
innovations unlocking
4
unlocking potential
4
potential biomimicry
4
biomimicry bionanotechnology
4
bionanotechnology bionanotechnology
4
bionanotechnology surged
4
surged forefront
4
forefront scientific
4
scientific innovation
4

Similar Publications

Chimp optimization algorithm (CHOA) is a recently developed nature-inspired technique that mimics the swarm intelligence of chimpanzee colonies. However, the original CHOA suffers from slow convergence and a tendency to reach local optima when dealing with multidimensional problems. To address these limitations, we propose TASR-CHOA, a twofold adaptive stochastic reinforced variant.

View Article and Find Full Text PDF

Biomimetic Plant-Root-Inspired Robotic Sensor System.

Biosensors (Basel)

November 2024

Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028 Barcelona, Spain.

There are many examples in nature in which the ability to detect is combined with decision-making, such as the basic survival instinct of plants and animals to search for food. We can technically translate this innate function via the use of robotics with integrated sensors and artificial intelligence. However, the integration of sensing capabilities into robotics has traditionally been neglected due to the significant associated technical challenges.

View Article and Find Full Text PDF

Cloud cover experiences rapid fluctuations, significantly impacting the irradiance reaching the ground and causing frequent variations in photovoltaic power output. Accurate detection of thin and fragmented clouds is crucial for reliable photovoltaic power generation forecasting. In this paper, we introduce a novel cloud detection method, termed Adaptive Laplacian Coordination Enhanced Cross-Feature U-Net (ALCU-Net).

View Article and Find Full Text PDF

Starfish-Inspired Solid-State Li-ion Conductive Membrane with Balanced Rigidity and Flexibility for Ultrastable Lithium Metal Batteries.

Angew Chem Int Ed Engl

December 2024

Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia.

The performance of solid-state lithium-metal batteries (SSLMB) is often constrained by the low ionic conductivity, narrow electrochemical window, and insufficient mechanical strength of polyethylene oxide (PEO)-based electrolytes. Inspired by the soft-outside, rigid-inside structure of starfish, we designed multifunctional "starfish-type" composite polymer electrolytes (CPEs) using electrospinning technology. These CPEs feature a three-dimensional rigid skeleton network composed of polyacrylonitrile/metal-organic frameworks/ionic liquids (PAN/MOFs/ILs), creating continuous and efficient Li transport channels: MOFs impart rigidity, PEO acts as a cushioning outer layer to enhance interfacial compatibility, and ILs reduce interfacial resistance.

View Article and Find Full Text PDF

Bacterial infections and severe bleeding continue to pose significant challenges in wound repair. There is an urgent need for innovative, nature-inspired hydrogel dressings with antibacterial and hemostatic properties. A Ge-β-CD-CS-OREC conjugate hydrogel was developed by grafting β-CD and CS-OREC nanocomposites into a Ge matrix using EDC/NHS crosslinking, as confirmed by FT-IR and EDX analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!