A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cellular mechanism of polarized auxin transport on fruit shape determination revealed by time-lapse live imaging. | LitMetric

Cellular mechanism of polarized auxin transport on fruit shape determination revealed by time-lapse live imaging.

Plant Reprod

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China.

Published: November 2024

Polarized auxin transport regulates fruit shape determination by promoting anisotropic cell growth. Angiosperms produce organs with distinct shape resultant from adaptive evolution. Understanding the cellular basis underlying the development of plant organ has been a central topic in plant biology as it is key to unlock the mechanisms leading to the diversification of plants. Variations in the location of synthesis, polarized auxin transport (PAT) have been proposed to account for the development of diverse organ shapes, but the exact cellular mechanism has yet to be elucidated. The Capsella rubella develops a perfect heart-shaped fruit from an ovate shape gynoecium that is tightly linked to the localized auxin synthesis in the valve tips and provides a unique opportunity to address this question. In this study, we studied auxin movement in the fruits and the cellular effect of N-1-Naphthylphthalamic Acid (NPA) on the fruit shape determination by constructing the pCrPIN3:PIN3:GFP reporter and live-imaging. We found PAT in the valve epidermis is in congruent with fruit shape development and NPA treatment disrupts the heat-shaped fruit development mainly by repressing cell anisotropic growth with minor effect on division. As the Capsella fruit is unusually big in size, we also included a detailed step-by-step protocol on how to conduct live-imaging experiment. We further test the utility of this protocol by conducting a live-imaging analysis of the gynophore in Arachis hypogaea. Collectively, the results of this study elucidated the mechanism on how auxin signal was translated into instructions guiding cell growth during organ shape determination. In addition, the description of the detailed live-imaging protocol will encourage further studies of the cellular mechanisms underlying shape diversification in angiosperms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00497-024-00513-xDOI Listing

Publication Analysis

Top Keywords

polarized auxin
12
auxin transport
12
fruit shape
12
shape determination
12
cellular mechanism
8
cell growth
8
shape
7
auxin
6
fruit
6
cellular
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!