Microbial and mineralogical characterization of the alkaline Chae Son hot spring, Northern Thailand.

Extremophiles

Department of National Parks, Wildlife and Plant Conservation, Protected Areas Regional Office 13, Chae Son National Park, Lampang, Thailand.

Published: November 2024

Early characterizations by morphological identification through light microscopy only revealed the presence of a few microbial lineages and the majority of microbial community at the Chae Son hot spring remains uncharacterized. Therefore, this study aims to examine thermophilic microbial communities at the Chae Son hot spring using next-generation sequencing, including investigating hot spring mineralogy. Results suggest that the Chae Son hot spring (49-75 °C, pH = 6.5-7.0) precipitates digitate structures which comprise mainly silica, and that microbial permineralization is primarily through silicification. Alternating layers of mineralized microbial biofilms and silica were observed in digitate sinter cross-sections, contributing to the build-up of microstromatolites. Molecular results revealed that phylogenetically distinct members of photoautotrophic taxa, Chloroflexota and Cyanobacteriota, dominated spring microbial communities (63.19% relative abundance). Potential primary production processes were mainly through photoautotrophy, with minor lithoautotrophic activities (e.g., sulfur cycling and nitrogen cycling). Moreover, overall microbial community and Cyanobacteriota population alpha diversities significantly decreased with increased temperatures. However, no significant correlation was identified between Chloroflexota population diversity and temperatures. This study provides an update on the microbial community using a high-throughput next-generation sequencing technology, including the mineralogy of the Chae Son hot spring, Northern Thailand.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00792-024-01373-zDOI Listing

Publication Analysis

Top Keywords

hot spring
24
chae son
20
son hot
20
microbial community
12
microbial
9
spring northern
8
northern thailand
8
microbial communities
8
next-generation sequencing
8
mineralogy chae
8

Similar Publications

The Kuril Islands are located in the Far-East of Russia and enriched with shallow and terrestrial hot springs. Prokaryotic diversity of Kuril geothermal environments has been studied fragmentarily and mainly by culture-dependent methods. We performed the first large-scale investigation of microbial communities, inhabited more than 30 terrestrial hot springs of Kunashir and Iturup Islands, analyzed by 16S rRNA gene fragment amplicon sequencing, together with chemical analysis of thermal waters and sediments.

View Article and Find Full Text PDF

Alga-dominated geothermal spring communities in Yellowstone National Park (YNP), USA, have been the focus of many studies, however, relatively little is known about the composition and community interactions which underpin these ecosystems. Our goal was to determine, in three neighboring yet distinct environments in Lemonade Creek, YNP, how cells cope with abiotic stressors over the diurnal cycle. All three environments are colonized by two photosynthetic lineages, and , both of which are extremophilic Cyanidiophyceae red algae.

View Article and Find Full Text PDF

Background: Interleukin-23 inhibition is effective in treating ulcerative colitis. Guselkumab is a dual-acting, human IgG1, interleukin-23p19 subunit inhibitor that potently neutralises interleukin-23 and can bind to CD64. We aimed to evaluate the efficacy and safety of guselkumab as induction and maintenance therapy in patients with ulcerative colitis.

View Article and Find Full Text PDF

Background: Tramway Ridge, a geothermal Antarctic Specially Protected Area (elevation 3340 m) located near the summit of Mount Erebus, is home to a unique community composed of cosmopolitan surface-associated micro-organisms and abundant, poorly understood subsurface-associated microorganisms. Here, we use shotgun metagenomics to compare the functional capabilities of this community to those found elsewhere on Earth and to infer in situ diversity and metabolic capabilities of abundant subsurface taxa.

Results: We found that the functional potential in this community is most similar to that found in terrestrial hydrothermal environments (hot springs, sediments) and that the two dominant organisms in the subsurface carry high rates of in situ diversity which was taken as evidence of potential endemicity.

View Article and Find Full Text PDF

A Novel Technique for Monitoring Carbonate and Scale Precipitation Using a Batch-Process-Based Hetero-Core Fiber Optic Sensor.

Sensors (Basel)

November 2024

Department of Natural and Environmental Sciences, Faculty of Science, Academic Assembly, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.

Techniques for monitoring calcium carbonate and silica deposits (scale) in geothermal power plants and hot spring facilities using fiber optic sensors have already been reported. These sensors continuously measure changes in light transmittance with a detector and, when applied to field tests, require the installation of a power supply and sensor monitoring equipment. However, on some sites, a power supply may not be available, or a specialist skilled in handling scale sensors is required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!