A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Leveraging machine learning in limited sampling strategies for efficient estimation of the area under the curve in pharmacokinetic analysis: a review. | LitMetric

Objective: Limited sampling strategies are widely employed in clinical practice to minimize the number of blood samples required for the accurate area under the curve calculations, as obtaining these samples can be costly and challenging. Traditionally, the maximum a posteriori Bayesian estimation has been the standard method for the area under the curve estimation based on limited samples. However, machine learning is emerging as a promising alternative for this purpose. Here, we review studies that utilize machine learning approaches to develop limited sampling strategies and compare the strengths and weaknesses of these machine learning methods.

Methods: We searched the literature for studies that used machine learning to estimate the area under the curve using a limited sampling strategy approach.

Results: We identified ten studies that developed machine learning models to estimate the area under the curve for six different drugs. Several of these models demonstrated good accuracy and precision in area under the curve estimation in reference to the traditional Bayesian approach, highlighting the potential of machine learning models in precision dosing.

Conclusions: Despite these promising early results, the development of machine learning for limited sampling strategies is still in its early stages. Further research might be needed to validate machine learning models with larger, high-quality clinical datasets to ensure their reliability and applicability in clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00228-024-03780-9DOI Listing

Publication Analysis

Top Keywords

machine learning
36
area curve
24
limited sampling
20
sampling strategies
16
learning models
12
learning
9
learning limited
8
curve estimation
8
machine
8
estimate area
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!