A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reconstructing 3D histological structures using machine learning (artificial intelligence) algorithms. | LitMetric

Reconstructing 3D histological structures using machine learning (artificial intelligence) algorithms.

Pathologie (Heidelb)

Department of Biological Physics, Eötvös Loránd University, Pázmány Péter Sétány 1/a, 1117, Budapest, Hungary.

Published: November 2024

Background: Histomorphometry is currently the gold standard for bone microarchitectural examinations. This relies on two-dimensional (2D) sections to deduce the spatial properties of structures. Micromorphometric parameters are calculated from these sections based on the assumption of a plate-like 3D microarchitecture, resulting in the loss of 3D structure due to the destructive nature of classical histological processing.

Materials And Methods: To overcome the limitation of histomorphometry and reconstruct the 3D architecture of bone core biopsy samples from 2D histological sections, bone core biopsy samples were decalcified and embedded in paraffin. Subsequently, 5 µm thick serial sections were stained with hematoxylin and eosin and scanned using a 3DHISTECH PANNORAMIC 1000 Digital Slide Scanner (3DHISTECH, Budapest, Hungary). A modified U‑Net architecture was trained to categorize tissues on the sections. LoFTR feature matching combined with affine transformations was employed to create the histologic reconstruction. Micromorphometric parameters were calculated using Bruker's CTAn software (v. 1.18.8.0, Bruker, Kontich, Belgium) for both histological and microCT datasets.

Results: Our method achieved an overall accuracy of 95.26% (95% confidence interval (CI): [94.15%, 96.37%]) with an F‑score of 0.9320 (95% CI: [0.9211, 0.9429]) averaged across all classes. Correlation coefficients between micromorphometric parameters measured on microCT imaging and histological reconstruction showed a strong linear relationship, with Spearman's ρ‑values of 0.777, 0.717, 0.705, 0.666, and 0.687 for bone volume/tissue volume (BV/TV), bone surface/TV, trabecular pattern factor, trabecular thickness, and trabecular separation, respectively. Bland-Altman and mountain plots indicated good agreement between the methods for BV/TV measurements.

Conclusion: This method enables examination of tissue microarchitecture in 3D with an even higher resolution than microcomputed tomography (microCT), without losing information on cellularity. However, the limitation of this procedure is its destructive nature, which precludes subsequent mechanical testing of the sample or any further secondary measurements. Furthermore, the number of histological sections that can be created from a single sample is limited.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00292-024-01387-6DOI Listing

Publication Analysis

Top Keywords

micromorphometric parameters
12
parameters calculated
8
destructive nature
8
bone core
8
core biopsy
8
biopsy samples
8
histological sections
8
sections
6
bone
5
histological
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!